Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T09:15:43.092Z Has data issue: false hasContentIssue false

An unusually thermally stable magnetite from a niobium mine in Brazil

Published online by Cambridge University Press:  09 July 2018

A. C. Silva
Affiliation:
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
M. C. Pereira
Affiliation:
Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39803-371 Teófilo Otoni, Minas Gerais, Brazil
L. C. A. Oliveira
Affiliation:
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
L. C. D. Cavalcante
Affiliation:
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil Centro de Ciências da Natureza, Universidade Federal do Piauí, 64049-550 Teresina, Piauí, Brazil
J. D. Fabris
Affiliation:
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, Minas Gerais, Brazil
E. Murad*
Affiliation:
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
*

Abstract

Magnetite-rich waste from a niobium mine near Araxá, State of Minas Gerais, Brazil, was heated to 500°C and 1000°C under an O2 atmosphere. The original waste and its oxidized products were characterized by energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), room-temperature 57Fe Mössbauer spectroscopy, thermogravimetric analysis (TG) and temperature-programmed reduction (TPR).

Semiquantitative analyses by EDS and quantitative chemical analyses showed the waste to be constituted primarily of Fe with minor amounts of Ti, Ba, Al, Si, Nb, Mn, S and P. Mössbauer and XRD showed the waste to consist predominantly of magnetite and hematite. The magnetite content decreases when the temperature increases due to its direct conversion to hematite. However, at 500°C only 10 wt.% of original magnetite was converted to hematite, confirming the high stability of this magnetite, which could still be detected at 1000°C. The TG profile shows no significant weight gain on heating, indicating a high stability of the magnetite. The TPR profiles show that the hematite in the waste is sintered after treatment at 1000°C and the reduction peaks are consequently shifted to higher temperatures. This high thermal stability is attributed to a moderate isomorphous replacement of Fe by other cations present in the Nb mining waste.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade, A.L., Souza, D.M., Pereira, M.C., Fabris, J.D. & Domingues, R.Z. (2009) Magnetic properties of nanoparticles obtained by different chemical routes. Journal of Nanoscience and Nanotechnology, 9, 2081–2087.CrossRefGoogle ScholarPubMed
Braun, P.B. (1952) A superstructure in spinels. Nature, 179, 1123.CrossRefGoogle Scholar
Chlan, V., Gamaliy, E., Štěpánková, H., Kouřil, K., Englich, J., Kohout, J. & Brabers, V. (2007) Nuclear magnetic resonance of Fe57 in Al, Ga, Ti-substituted magnetite above Verwey temperature. Journal of Magnetism and Magnetic Materials, 310, 2555–2557.CrossRefGoogle Scholar
Cornell, R.M. & Schwertmann, U. (2003) The Iron Oxides – Structure, Properties, Reactions, Occurrences and Uses, Second Edition. Wiley-VCH, Weinheim.Google Scholar
Gokhale, K.V.G.K. (1961) Studies on the oxidation of magnetite. Economic Geology, 56, 963–971.Google Scholar
Ishikawa, T., Nakazaki, H., Yasukawa, A., Kandori, K. & Seto, M. (1998) Structure and properties of magnetite formed in the presence of nickel (II) ions. Materials Research Bulletin, 33, 1609–1619.CrossRefGoogle Scholar
Issa Filho, A., Riffel, B.F. & Sousa, C.A. de, F. (2002) Some aspects of the mineralogy of CBMM niobium deposit and mining and pyrochlore ore processing – Araxá, MG – Brazil. In: Niobium Science & Technology: Proceedings of the International Symposium Niobium 2001 (Orlando, Florida, USA) (Niobium 2001 Ltd, 2002), 15 pp. Accessed 25 J anuar y 2011 at http://www.cbmm.com.br/english/capitulos/mine/geology/some.pdf. Google Scholar
Kamitani, M. & Hirano, H. (1990) Araxa carbonatite deposit and its lateritization. Bulletin of the Geological Society of Japan, 41, 595–604.Google Scholar
Kouptsidis, J., Peters, F., Proch, D. & Singer, W. (2001) Niob für TESLA: Eine globale Marktanalyse. TESLA-Report 2001-27, 16 pp, Deutsches Elektronen-Synchrotron DESY.Google Scholar
Liang, X., Zhong, Y., Zhu, S., Zhu, J., Yuan, P., He, H. & Zhang, J. (2010) The decolorization of Acid Orange II in non-homogeneous Fenton reaction catalyzed by natural vanadium–titanium magnetite. Journal of Hazardous Materials, 181, 112–120.CrossRefGoogle ScholarPubMed
Lie, C.T., Kuo, P.C., Sun, A.C., Chou, C.Y., Chen, S.C., Chang, I.J., Wu, T.H. & Chen, J.W. (2003) Effects of Mg doping and sintering temperature on the magnetoresistance of sintered Fe3O4 ferrites. IEEE Transactions on Magnetics, 39, 2800–2802.CrossRefGoogle Scholar
Magalhães, F., Pereira, M.C., Botrel, S.E.C., Fabris, J.D., Macedo, W.A., Mendonça, R., Lago, R.M. & Oliveira, L.C.A. (2007) Cr-containing magnetites Fe3–xCrxO4: the role of Cr3+ and Fe2+ on the stability and reactivity towards H2O2 reactions. Applied Catalysis A: General, 332, 115–123.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317–32.Google Scholar
Menini, L., Pereira, M.C., Parreira, L.A., Fabris, J.D. & Gusevskaya, E.V. (2008) Cobalt and manganese-substituted ferrites as efficient single-site heterogeneous catalysts for aerobic oxidation of monoterpenic alkenes under solvent-free conditions. Journal of Catalysis, 254, 355–364.Google Scholar
Menini, L., Pereira, M.C., Ferreira, A.C., Fabris, J.D. & Gusevskaya, E.V. (2010) Cobalt iron magnetic composites as heterogeneous catalysts for the aerobic oxidation of thiols under alkali free conditions. Applied Catalysis A: General, 392, 151–157.Google Scholar
Murad, E. (1985) The influence of aluminium substitution on the absorption of gamma-rays in hematite. Physics Letters A, 111, 79–82.Google Scholar
Murad, E. & Schwertmann, U. (1993) Temporal stability of a fine-grained magnetite. Clays and Clay Minerals, 41, 111–113.CrossRefGoogle Scholar
Oliveira, L.C.A., Fabris, J.D., Rios, R.R.V.A., Mussel, W.N. & Lago, R.M. (2004) Fe3–xMnxO4 catalysts: phase transformations and carbon monoxide oxidation. Applied Catalysis A: General, 259, 253–259.Google Scholar
Oliveira, L.C.A., Ramalho, T.C., Souza, E.F., Gonçalves, M., Oliveira, D.Q.L., Pereira, M.C. & Fabris, J.D. (2008) Catalytic properties of goethite prepared in the presence of Nb on oxidation reactions in water: computational and experimental studies. Applied Catalysis B: Environmental, 83, 169–176.Google Scholar
Pegoretti, V.C.B., Couceiro, P.R.C., Gonçalves, C.M., Lelis, M.D.F. & Fabris, J.D. (2010) Preparation and characterization of tin-doped spinel ferrite. Journal of Alloys and Compounds, 505, 125–129.CrossRefGoogle Scholar
Pereira, R.F. & Andrade, M.R. (2007) Niobium. Mineral Summary 2007, National Department for Mineral Production, Ministry of Mines and Energy (Brazil). Accessed 25 January 2011 at http://www.dnpm.gov.br/assets/galeriaDocumento/SumarioMineral2007en/Niobium.doc Google Scholar
Pereira, M.C., Tavares, C.M., Fabris, J.D., Lago, R.M., Murad, E. & Criscuolo, P. S .R. (2007) Characterization of a tropical soil and a waste from kaolin mining and their suitability as heterogeneous catalysts for Fenton and Fenton-like reactions. Clay Minerals, 42, 299–306.Google Scholar
Pereira, M.C., Cavalcante, L.C.D., Magalhães F., , Fabris, J.D., Stucki, J.W., Oliveira, L.C.A. & Murad, E. (2010) Composites prepared from natural iron oxides and sucrose: a highly reactive system for the oxidation of organic contaminants in water. Chemical Engineering Journal, 166, 962–969.Google Scholar
Pergher, S.B.C., Oliveira, L.C.A., Smaniotto, A. & Petkowicz, D.I. (2005) Magnetic zeolites for removal of metals in water. Química Nova, 28, 751–755.Google Scholar
Rhoton, F.E., Bigham, J.M., Norton, L.D. & Smeck, N.E. (1981) Contribution of magnetite to oxalate-extractable iron in soils and sediments from the Maumee River Basin of Ohio. Soil Science Society of America Journal, 45, 645–649.Google Scholar
Sawatzky, G.A., van der Woude, F. & Morrish, A.H. (1996) Mössbauer study of several ferromagnetic spinels. Physical Review, 187, 747–757.Google Scholar
Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodensdurch Extraktion mit Ammoniumoxalatlö sung. Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde, 105, 194–202.Google Scholar
Schwertmann, U. & Murad, E. (1990) The influence of aluminum on iron oxides. XIV. Al-substituted magnetite synthesized at ambient-temperatures. Clays and Clay Minerals, 38, 196–202.Google Scholar
Schwertmann, U., Fitzpatrick, R.W., Taylor, R.M. & Lewis, D.G. (1979) The influence of aluminum on iron oxides. Part II. Preparation and properties of Alsubstituted hematites. Clays and Clay Minerals, 27, 105–112.CrossRefGoogle Scholar
Sidhu, P.S. (1988) The transformation of trace-element substituted maghemite to hematite. Clays and Clay Minerals, 36, 31–38.CrossRefGoogle Scholar
Sidhu, P.S., Gilkes, R.J. & Posner, A.M. (1977) Mechanism of the low temperature oxidation of synthetic magnetites. Journal of Inorganic and Nuclear Chemistry, 39, 1953–1958.Google Scholar
Varshney, D. & Yogi, A. (2010) Structural and transport properties of stoichiometric and Cu2+-doped magnetite: Fe3-xCuxO4 . Materials Chemistry and Physics, 123, 434–438.Google Scholar
Walker, A.L. (1983) The effects of magnetite on oxalateand dithionite-extractable iron. Soil Science Society of America Journal, 47, 1022–1026.CrossRefGoogle Scholar
Zhou, Z., Jin, X., Mukovskii, Y.M. & Shvets, I.V. (2004) Kinetics of oxidation of low-index surfaces of magnetite. Journal of Physics: Condensed Matter, 16, 1–12.Google Scholar