Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T20:41:04.592Z Has data issue: false hasContentIssue false

Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review

Published online by Cambridge University Press:  09 July 2018

B. Lanson*
Affiliation:
Environmental Geochemistry Group, LGIT-IRIGM, CNRS - University of Grenoble, 38041 Grenoble Cedex 9, France
D. Beaufort
Affiliation:
HydrASA, University of Poitiers - CNRS, 40 av. Recteur Pineau, 86022 Poitiers Cedex, France
G. Berger
Affiliation:
Geochemistry Lab., CNRS - University Paul Sabatier, 38 rue des Trente-Six Ponts, 31400 Toulouse, France
A. Bauer
Affiliation:
For schungszentrum Karlsruhe, Institut für Nukleare Entsorgungstechnik, PO Box 3640, 76021 Karlsruhe, Germany
A. Cassagnabère
Affiliation:
Etudes Recherches Matériaux, Espace 10 - République 2, Rue A. Haller, 86000 Poitiers, France
A. Meunier
Affiliation:
HydrASA, University of Poitiers - CNRS, 40 av. Recteur Pineau, 86022 Poitiers Cedex, France

Abstract

The diagenetic evolution of kaolin and illitic minerals in sandstones is described here. The structural characterization of these minerals, the possible reaction pathways leading to their crystallization, and the origin of the fluids involved are discussed specifically.

While early precipitation of kaolinite is in general related to flushing by meteoric waters, subsequent diagenetic kaolinite-to-dickite transformation probably results from invasion by acidic fluids of organic origin. Dickite is the stable polytype in most sandstone formations and the kaoliniteto- dickite conversion is kinetically controlled.

The conventional model of kaolin illitization, assuming a thermodynamic control in a closed system, is discussed and compared to an alternative model in which illitization of kaolin is not coupled to dissolution of K-feldspar (Berger et al., 1997). In the latter model, illite crystallization at the expense of kaolin implies that an energy barrier is overcome either by an increased K+/H+ activity ratio in solution or by a considerable temperature increase.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1980) Structures of layer silicates. Pp. 1123 in. Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogic al Society, London.Google Scholar
Bath, A.H., Milodowski, A.E. & Spiro, A.E. (1987) Diagenesis of carbonate cements in Permo-Triassis sandstones in the Wessex and East Yorkshire- Lincolnshire basins, UK: A stable isotope study. Pp. 173190 in. Diagenesi s of Sediment ary Sequenc es (Marshall, J. D., editor ). Special Publication 36, Geological Society, London.Google Scholar
Bauer, A., Velde, B. & Berger, G. (1998) Kaolinite transformatio n in high molar KOH solutions. Applied Geochemistry, 13, 619629.CrossRefGoogle Scholar
Bayliss, P., Loughnan, F.C. & Standard, J.C. (1965) Dickite in the Hawkesbury sandstone of the Sydney Basin, Australia. American Mineralogi st, 50, 418426.Google Scholar
Beaufort, D., Cassagnabère, A., Petit, S., Lanson, B., Berger, G., Lacharpagne, J.-C. & Johansen, H. (1998) Kaolinite-to-dickite conversion series in sandstone reservoirs. Clay Minerals, 33, 297316.Google Scholar
Berger, G., Lacharpagne, J.-C., Velde, B., Beaufort, D. & Lanson, B. (1995) Mécanisme et contraintes ciné- tiques des réactions d’illitisation d’argiles sédimentaires, déduits de modélisations d’interaction eauroche. Bull etin de Cent re de Reche rche s. Exploration et Production, 19, 225234.Google Scholar
Berger, G., Lacharpagne, J.-C., Velde, B., Beaufort, D. & Lanson, B. (1997) Kinetic constraints for mineral reactions in sandstone/ shales sequences and modelling of the effect of the organic diagenesis. Applied Geochemistry, 12, 2335.Google Scholar
Berger, G., Beaufort, D. & Lacharpagne, J.-C. (1998) Dissolution of sanidine up to 300°C near equilibrium at approximately neutral pH. Pp. 823826 in: Water- Rock Interaction (Arehart, G.B. & Hultson, J.R., editors). Balkema, Rotterdam, The Netherlands.Google Scholar
Bjørkum, P.A. & Gjelsvik, N. (1988) An isochemical model for formation of authigenic kaolinite, K-feldspar, and illite in sediments. Journal of Sedimentary Petrology, 58, 506511.Google Scholar
Bjørlykke, K. (1984) Formation of secondary porosity: How important is it? Pp. 285292 in. Clastic Diagenesis (McDonald, D.A. & Surdam, R.C., editors). Memoir 37, American Association of Petroleum Geologists, London.Google Scholar
Bjørlykke, K. & Aagaard, P. (1992) Clay minerals in North Sea sandstones. Pp. 6580 in. Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D.W. & Pittman, E.D., editors). SEPM Special Publication 47, SEPM, Tulsa, Oklahoma, USA.Google Scholar
Bjørlykke, K., Aagaard, P., Dypvik, H., Hastings, D.S. & Harper, A.S. (1986) Diagenesis and reservoir properties of Jurassic sandstones from the Haltenbanken area, offshore Mid-Norway. Pp. 275286 in: Habitat of Hydrocarbons on the Norwegian Continental Shelf (A.M. Spencer, editor). Graham & Trotman, London.Google Scholar
Bjørlykke, K., Nedkvitine, T., Ramm, M. & Saigal, G.C. (1992) Diagenetic process in the Brent Group (Middle Jurassic) reservoirs of the North Sea: An overview. Pp. 263287 in. Geology of the Brent Group (Morton, A.C., Haszeldine, R.S., Giles, M.R. and Brown, S., editors). Special Publication 61. Geological Society, London.Google Scholar
Blackbourn, G.A. (1984) Diagenetic history and reservoir quality of a Brent sand sequence. Clay Minerals, 19, 377389.CrossRefGoogle Scholar
Boles, J.R. & Francks, G.S. (1979) Clay diagenesis in Wilcox sandstones of Southwest Texas: Implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology, 49, 5570.Google Scholar
Bookin, A.S., Drits, V.A., Plançon, A. & Tchoubar, C. (1989) Stacking faults in kaolin-group minerals in the light of real structural features. Clays and Clay Minerals, 37, 297307.CrossRefGoogle Scholar
Brindley, G.W. & Porter, A.R.D. (1978) Occurrence of dickite in Jamaica. Ordered and disordered varieties. American Mineralogist, 63, 554562.Google Scholar
Brindley, G.W., Kao, C.C., Harrison, J.L., Lipsicas, M. & Raythatha, R. (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays and Clay Minerals, 34, 239249.Google Scholar
Burley, S.D. & MacQuaker, J.H.S. (1992) Authigenic clays, diagenetic sequences and conceptual diagenetic models in contrasting basin-margin and basincenter North Sea Jurassic sandstones and mudstones. Pp. 81110 in. Origin, Diagenesis and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D.W. & Pittman, E.D., editors). SEPM Special Publication 47, SEPM, Tulsa, Oklahoma, USA.Google Scholar
Cassagnabère, A. (1998) Caractérisation et interprétation de la transition kaolinite dickite dans les réservoirs à hydrocarbures de Froy et Rind (Mer du Nord), Norvège. PhD thesis, Univ. Poitiers, France.Google Scholar
Cassagnabère, A., Iden, I.K., Johansen, H., Lacharpagne, J.-C. & Beaufort, D. (1999) Kaolinite and dickite in Frøy and Rind sandstone hydrocarbon reservoirs of the Brent Formation (Norwegian Continental Shelf). Pp. 97102 in: Clays for our Future: Proceedings of the 11th International Clay Conference (H. Kodama et al., editors). ICC97 Organizing Committee, Ottawa.Google Scholar
Cassan, J.-P. & Lucas, J. (1966) La diagenèse des grès argileux d’Hassi-Messaoud (Sahara): Silicification et dickitisation. Bulletin Service Carte Géologie Alsace Lorraine, 19, 241253.CrossRefGoogle Scholar
Chukhrov, F.V. (1968) Some results of the study of clay minerals in the USSR. Clays and Clay Minerals, 16, 314.Google Scholar
De Almeida Martins, L. (1999) Illitisation des minéraux argileux du groupe kaolin dans le champs pétrolier de Rind (Norvège). DEA thesis, Univ. Poitiers, France.Google Scholar
De Ros, L.F. (1998) Heterogeneous generation and evolution of diagenetic quartzarenites in Silurian- Devonian Furnas Formation of the Paraná Basin, southern Brazil. Sedimentary Geology, 116, 99128.CrossRefGoogle Scholar
Drits, V.A. & Tchoubar, C. (1990) X-ray Diffraction by Disordered Lamellar Structure s: Theory and Applica tions to Microdivided Silicates and Carbons. Springer-Verlag, Berlin.Google Scholar
Drits, V.A., Weber, F., Salyn, A.L. & Tsipursky, S.I. (1993) X-ray identification of one-layer illite varieties: application to the study of illites around uranium deposits of Canada. Clays and Clay Minerals, 41, 389398.Google Scholar
Drits, V.A., Besson, G. & Muller, F. (1995) An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates. Clays and Clay Minerals, 43, 718731.Google Scholar
Drits, V.A., Lindgreen, H., Salyn, A.L., Ylagan, R.F. & McCarty, D.K. (1998) Semiquantitative determination of trans-vacant and cis-vacant 2:1 layers in illites and illite-smectites by thermal analysis and X-ray diffraction. American Mineralogist, 83, 11881198.Google Scholar
Ehrenberg, S.N. (1991) Kaolinized, potassium-leached zones at the contacts of the Garn Formation, Haltenbanken, mid-Norwegian continental shelf. Marine Petroleum Geology, 8, 250269.Google Scholar
Ehrenberg, S.N. & Nadeau, P.H. (1989) Formation of diagenetic illite in sandstones of the Garn formation, Haltenbanken area, mid-Norwegian continental shelf. Clay Minerals, 24, 233253.CrossRefGoogle Scholar
Ehrenberg, S.N., Aagaard, P., Wilson, M.J., Fraser, A.R. & Duthie, D.M.L. (1993) Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Minerals, 28, 325352.Google Scholar
Eslinger, E.V. & Pevear, D.R. (1988) Clay minerals for petroleum geologists and engineers. SEPM Short course notes 22. SEPM, Tulsa, Oklahoma, USA.Google Scholar
Ferrero, J. & Kübler, B. (1964) Présence de dickite dans les grès cambriens d’Hassi-Messaoud. Bulletin Service Carte Gé ologie Alsace Lorraine, 17, 247261.CrossRefGoogle Scholar
Furlan, S., Clauer, N., Chauduri, S. & Sommer, F. (1996) K transfer during burial diagenesis in the Mahakam Delta Basin (Kalimantan, Indonesia). Clays and Clay Minerals, 44, 157169.Google Scholar
Gaupp, R., Matter, A., Platt, J. , Ramseyer, K. & Walzebuck, J. (1993) Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) gas reservoir, Northwest Germany. American Association of Petroleum Geologists Bulletin, 77, 11111128.Google Scholar
Giles, M.R., Stevenson, S., Martin, S., Cannon, S.J.C., Hamilton, P.J. & Samways, G.M. (1992) The reservoir properties and diagenesis of the Brent Group: A regional perspective. Pp. 289327 in. Geology of the Brent Group (Morton, A.C., Haszeldine, R.S., Giles, M.R. and Brown, S., editors). Special Publication 61. Geological Society, London.Google Scholar
Goodchild, M.W. & Whitaker, J.C.M. (1986) A petrographic study of the Rotliegendes sandstone reservoir (Lower Permian) in the Rough gas field. Clay Minerals, 21, 459477.CrossRefGoogle Scholar
Guggenheim, S., Alietti, A., Drits, V.A., Formoso, M.L.L., Galán, E., Koster, H.M., Paquet, H., Watanabe, T., Bain, D.C. & Hudnall, W.H. (1997) Report of the Association internationale pour l’étude des argiles (AIPEA) Nomenclature Committee for 1996. Clays and Clay Minerals, 45, 298300.Google Scholar
Hancock, N.J. (1978) Possible causes of Rotliegend sandstone diagenesis in northern West Germany. Journal of Geological Society of London, 135, 3540.CrossRefGoogle Scholar
Hancock, N.J. & Taylor, A.M. (1978) Clay mineral diagenesis and oil migration in the Middle Jurassic Brent sand formation. Journal of the Geological Society of London, 135, 6972.Google Scholar
Hassouta, L. (1999) La comparaison de grès cimentés et de grès non cimentés par la calcite du groupe du Brent (zone d’Alwyn, Mer du Nord). Une clé pour l’établissement de bilans de matière et la compré - hension des processus de formation du quartz et des argiles (illite, kaolinite, dickite). PhD thesis, Univ. Lille, France.Google Scholar
Hassouta, L., Buatier, M.D., Potdevin, J.-L. & Liewig, N. (1999) Clay diagenesis in the sandstone reservoir of the Ellon Field (Alwyn, North Sea). Clays and Clay Minerals, 47, 269285.CrossRefGoogle Scholar
Haszeldine, S., Brint, J.F., Fallick, A.E., Hamilton, P.J. & Brown, S. (1992) K-Ar dating of illites in Brent Group reservoirs. Pp. 377400 in. Geology of the Brent Group (Morton, A.C., Haszeldine, R.S., Giles, M.R. and Brown, S., editors). Special Publication 61. Geological Society, London.Google Scholar
Hemingway, J.E. & Brindley, G.W. (1948) The occurrence of dickite in some sedimentary rocks. P. 308 in: Proc. 18th International Geological Congress Report 13.Google Scholar
Howard, J.J. (1981) Lithium and potassium saturation of illite/smectite clays from interlaminated shales and sandstones. Clays and Clay Minerals, 29, 136142.Google Scholar
Hower, J., Eslinger, E.V., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725737.Google Scholar
Huang, W.L. (1993) The formation of illitic clays from kaolinite in KOH solution from 225°C to 350°C. Clays and Clay Minerals, 41, 645654.Google Scholar
Hunt, J.M. (1979) Petroleum Geochemistry and Geology. Freeman, San Francisco.Google Scholar
Hurst, A. (1985) Diagenetic chlorite formation in some Mesozoic shales from the Sleipner area of the North sea. Clay Minerals, 20, 6979.Google Scholar
Hurst, A. & Irwin, H. (1982) Geological modelling of clay diagenesis in sandstones. Clay Minerals, 17, 522.CrossRefGoogle Scholar
Johnson, J.W., Oelkers, E.H. & Helgeson, H.C. (1992) SUPCRT92 a software package for calculating the standard thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 500 bars and 0 to 1000°C. Computers and Geosciences, 18, 889947.Google Scholar
Kantorowicz, J.D. (1984) The nature, origin and distribution of authigenic clay minerals from middle Jurassic Ravenscar and Brent group sandstones. Clay Minerals, 19, 359375.CrossRefGoogle Scholar
Kantorowicz, J.D. (1990) The influence of variations in illite morphology on the permeability of Middle Jurassic Brent Group sandstones. Marine Petroleum Geology, 7, 6674.Google Scholar
Kisch, H.J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. Pp. 289494 in. Diagenesis in Sediments and Sedimentary Rocks 2 (Larsen, G. & Chilingar, G.V., editors). Developments in Sedimentology 25B, Elsevier, Amsterdam.Google Scholar
Kisch, H.J. (1990) Calibration of the anchizone: A critical comparison of illite ‘crystallinity’ scales used for definition. Journal of Metamorphic Geology, 8, 3146.Google Scholar
Kossovskaya, A.G. & Shutov, V.D. (1963) Facies of epiand metagenesis. International Geology Review, 7, 11571167.Google Scholar
Kübler, B. (1964) Les argiles, indicateurs de métamorphisme. Revue de l’Institut Française Pétrole, 19, 10931112.Google Scholar
Kübler, B. (1968) Evaluation quantitative du métamorphisme par la cristallinité de l’illite: Etat des progrès réalisés ces dernières années. Bulletin de Centre Recherche Pau-SNPA, 2, 385397.Google Scholar
Lanson, B. (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): A convenient way to study clay minerals. Clays and Clay Minerals, 45, 132146.Google Scholar
Lanson, B. & Besson, G. (1992) Characterization of the e nd of sme ct i te- to- i ll it e t ra nsformat ion: Decomposition of X-ray patterns. Clays and Clay Minerals, 40, 4052.Google Scholar
Lanson, B., Beaufort, D., Berger, G., Petit, S. & Lacharpagne, J.-C. (1995) Evolution de la structure cristallographique des minéraux argileux dans le réservoir gréseux Rotliegend des Pays-Bas. Bulletin de Centre Recherche Exploration-Production, 19, 243265.Google Scholar
Lanson, B., Beaufort, D., Berger, G., Baradat, J. & Lacharpagne, J.-C. (1996) Late-stage diagenesis of clay minerals in porous rocks: Lower Permian Rot li ege ndes r ese rvoi r of f- sho re o f The Netherlands. Journal of Sedimentary Research, 66, 501518.Google Scholar
Lee, M., Aronson, J.L. & Savin, S.M. (1985) K/Ar dating of time of gas emplacement in Rotliegendes sandstone, Netherlands. American Association of Petroleum Geologists Bulletin, 69, 13811385.Google Scholar
Lee, M., Aronson, J.L. & Savin, S.M. (1989) Timing and conditions of Permian Rotliegende sandstone diagenesis, southern North Sea: K/Ar and oxygen isotopic data. American Association of Petroleum Geologists Bulletin, 73, 195215.Google Scholar
Lønøy, A., Akelsen, J. & Rønning, K. (1986) Diagenesis of a deeply buried sandstone reservoir: Hield Field, northern North Sea. Clay Minerals, 21, 497511.Google Scholar
Macaulay, C.I., Fallick, A.E. & Hasezeldine, R.S. (1993) Textural and isotopic variations in diagenetic kaolinite from the Magnus oilfield sandstones. Clay Minerals, 28, 625639.Google Scholar
Mackenzie, R.C. (1970) Simple phyllosilicates based on gibbsite- and brucite-like sheets. Pp. 497537 in: Differential Thermal Analysis : Volume 1 Fundamental Aspects (Mackenzie, R.C., editor). Academic Press, New York.Google Scholar
Matthews, J. , Velde, B. & Johansen, H. (1994) Significance of K-Ar ages of authigenic illitic clay minerals in sandstones and shales from the North Sea. Clay Minerals, 29, 379389.CrossRefGoogle Scholar
McAulay, G.E., Burley, S.D. & Johnes, L.H. (1993) Silicate mineral authigenesis in the Hutton and NW Hutton fields: implications for sub-surface porosity development. Pp. 13771393 in: Petroleum Geology of Northwest Europe (Parker, J.R., editor). The Geological Society, London.Google Scholar
McAulay, G.E., Burley, S.D., Fallick, A.E. & Kuznir, N.J. (1994) Palaeohydrodynamic fluid flow regimes during diagenesis of the Brent group in the Hutton- NW Hutton reservoirs: Constraints from oxygen isotope studies of authigenic kaolin and reverse flexural modelling. Clay Minerals, 29, 609626.Google Scholar
Nedkvitne, T. & Bjørlykke, K. (1992) Secondary porosity in the Brent Group (Middle Jurassic) Hulddra field, North Sea: Implication for predicting lateral continuity of sandstones. Journal of Sedimentary Petrology, 62, 2334.Google Scholar
Osborne, M., Haszeldine, R.S. & Fallick, A.E. (1994) Variation in kaolinite morphology with growth temperature in isotopically mixed pore-fluids, Brent group, UK North Sea. Clay Minerals, 29, 591608.Google Scholar
Jr.Perry, E.A., & Hower, J. (1972) Late-stage dehydration in deeply buried pelitic sediments. American Association of Petroleum Geologists Bulletin, 56, 20132021.Google Scholar
Platt, J.D. (1993) Controls on clay mineral distribution and chemistry in the early Permian Rotliegend of Germany. Clay Minerals, 28, 393416.CrossRefGoogle Scholar
Purvis, K. (1995) Diagenesis of Lower Jurassic sandstones, Block 211/13 (Penguin area), UK northern North Sea. Marine Petroleum Geology, 12, 219228.CrossRefGoogle Scholar
Pye, K. & Krinsley, D.H. (1986) Diagenetic carbonate and evaporite minerals in Rotliegend aeolian sandstones of the southern North Sea: Their nature and relationship to secondary porosity development. Clay Minerals, 21, 443457.Google Scholar
Jr.Reynolds, R.C., (1980) Interstratified clay minerals. Pp. 249359 in. Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, The Mineralogical Society, London.CrossRefGoogle Scholar
Jr.Reynolds, R.C. & Thomson, C.H. (1993) Illite from the Potsdam sandstone of New York: A probable noncentrosymmetric mica structure. Clays and Clay Minerals, 41, 6672.Google Scholar
Robinson, A.G., Coleman, M.L. & Gluyas, J.G. (1993) The age of illite cement growth, Village Fields area, southern North Sea: Evidence from K-Ar ages and 18O/16O ratios. American Association of Petroleum Geologists Bulletin, 77, 6880.Google Scholar
Rossel, N.C. (1982) Clay mineral diagenesis in Rotliegend aeolian sandstones of the southern North sea. Clay Minerals, 17, 6977.Google Scholar
Ruiz Cruz, M.D. & Reyes, E. (1998) Kaolinite and dickite formation during shale diagenesis: isotopic data. Applied Geochemistry, 13, 95104.Google Scholar
Scotchman, I.C., Johnes, L.H. & Miller, R.S. (1989) Clay diagenesis and oil migration in Brent group sandstones of NW Hutton field, UK North Sea. Clay Minerals, 24, 339374.Google Scholar
Shutov, V.D., Aleksandrova, A.V. & Losievskaya, S.A. (1970) Genetic interpretation of the polymorphism of the kaolinite group in sedimentary rocks. Sedimentology, 15, 6982.Google Scholar
Small, J.S., Hamilton, D.L. & Habesch, S. (1992) Experimental simulation of clay precipitation within reservoir sandstones 2: Mechanism of illite formation and controls on morphology. Journal of Sedimentary Petrology, 62, 520529.Google Scholar
Smithson, F. (1954) The petrography of dickite sandstones in North Wales and northern England. Geological Magazine, 91, 177188.Google Scholar
Smithson, F. (1957) Dickite in sandstones from North Wales and norther n England. Mineralogical Magazine, 31, 381391.CrossRefGoogle Scholar
Sommer, F. (1978) Diagenesis of Jurassic sandstones in the Viking Graben. Journal of the Geological Society of London, 135, 6367.Google Scholar
Środoń, J. (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays and Clay Minerals, 28, 401411.Google Scholar
Środoń, J. (1981) X-ray identification of randomly interstratified illite-smectite in mixtures with discrete illite. Clay Minerals, 16, 297304.Google Scholar
Środoń, J. (1984) X-ray powder diffraction of illitic materials. Clays and Clay Minerals, 32, 337349.CrossRefGoogle Scholar
Środoń, J., Morgan, D.J., Eslinger, E.V., Eberl, D.D. & Karlinger, M.R. (1986) Chemistry of illite/smectite and end-member illite. Clays and Clay Minerals, 34, 368378.Google Scholar
Thomas, M. (1986) Diagenetic sequences and K/Ar dating in Jurassic sandstones, central Viking Graben: Effects on reservoir properties. Clay Minerals, 21, 695710.CrossRefGoogle Scholar
Turner, P., Jones, M., Prosser, D.J., Williams, G.D. & Searl, A. (1993) Structural and sedimentological controls on diagenesis in the Ravenspurn North gas reservoir, UK southern North Sea. Pp. 771785 in: Petroleum Geology of Northwest Europe (Parker, J.R., editor). The Geological Society, London.Google Scholar
Van Keer, I., Muchez, P. & Viaene, W. (1998) Clay mineralogical variations and evolutions in sandstone sequences near a coal seam and shales in the Westphalian of the Campine Basin (NE Belgium). Clay Minerals, 33, 159169.Google Scholar
Velde, B., Suzuki, T. & Nicot, E. (1986) Pressuretemperature- composition of illite/smectite mixedlayer minerals: Niger delta mudstones and other examples. Clays and Clay Minerals, 34, 435441.Google Scholar
Watanabe, T. (1981) Identification of illite/montmorillonite interstratification by X-ray powder diffraction. Journal of the Mineralogical Society of Japan, Spec. Issue 15, 3241 (in Japanese).Google Scholar
Watanabe, T. (1988) The structural model of illite/ smectite interstratified mineral and the diagram for their identification. Clay Science, 7, 97114.Google Scholar
Whitney, G. (1990) Role of water in the smectite-to-illite reaction. Clays and Clay Minerals, 38, 343350.Google Scholar
Wolery, T.J. (1983) EQ3NR, a computer program for geochemical aqueous speciation solubility calculations: user's guide and documentation. Lawrence Livermore National Laboratory, Livermore, CA, 53414, USA.Google Scholar
Ziegler, K., Sellwood, B.W. & Fallick, A.E. (1994) Radiogenic and stable isotope evidence for age and origin of authigenic illites in the Rotliegend, southern North Sea. Clay Minerals, 29, 555565.Google Scholar
Zimmerle, W. & Rösch, H. (1991) Petrogenetic significance of dickite in European sedimentary rocks. Zentralblatt für Geologie und Palaontologie, I, 11751196.Google Scholar
Zotov, A., Mukhamet-Galeev, A. & Schott, J. (1998) An experimental study of kaolinite and dickite relative stability at 150–300 degrees C and the thermodynamic proper ties of dicki te. American Mineralogist, 83, 516524.CrossRefGoogle Scholar