Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T09:12:06.908Z Has data issue: false hasContentIssue false

Beyond the Kubler Index

Published online by Cambridge University Press:  09 July 2018

D. D. Eberl
Affiliation:
US Geological Survey, Mail Stop 404, Federal Center, Denver, CO 80225, USA
B. Velde
Affiliation:
Laboratoire de Géologie, École Normale Supérieure, 24, rue Lhomond 75230, Paris cédex 05, France

Abstract

The value of peak width at half-height for the illite 001 XRD reflection is known as the Kubler index or the illite ‘crystallinity’ index. This measurement, which has been related to the degree of metamorphism of very low-grade, pelitic rocks, is a function of at least two crystal-chemical factors: (1) illite X-ray scattering domain size; and (2) illite structural distortions (especially swelling). Reynolds' NEWMOD computer program is used to construct a grid with which these two contributions to illite peak width can be determined independently from measurements of the 001 peak width at half-height and the Środoń intensity ratio. This method yields more information about changes undergone by illite during metamorphism than application of the Kubler index method alone.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H., Peacor, D.R. & Coombs, D.S. (1988) Formation mechanisms of illite, chlorite and mixed-layer illite- chlorite in Triassic volcanogenic sediments from the Southland Syncline, New Zealand. Contrib. Min. Pet., 99, 82–89.CrossRefGoogle Scholar
Baronnet, A. (1982) Ostwald ripening in solution. The case of calcite and mica. Estudios Geoldgicos, 38, 185–198.Google Scholar
Baronnet, A. (1984) Growth kinetics of the silicates. Miner. 62, 187232.Google Scholar
Blenkinsop, T.G. (1988) Definition of low-grade metamorphic zones using illite crystallinity. J. Met. Geol., 6, 623–636.Google Scholar
Drever, J.I. (1973) The preparation of oriented clay mineral specimens for X-ray diffraction analysis by a filter-membrane peel technique. Am. Miner., 58, 553–554.Google Scholar
Eberl, D.D. & Srodon, J. (1988) Ostwald ripening and interparticle diffraction effects for illite crystals. Am. Miner., 73, 1335–1345.Google Scholar
Eberl, D.D., Srodon, J., Lee, M., Nadeau, P.H. & Northrop, H.R. (1987) Sericite from the Silverton caldera, Colorado: Correlation among structure, composition, origin, and particle thickness. Am. Miner., 72, 914–934.Google Scholar
Frey, M. (1987) Very low-grade metamorphism of clastic sedimentary rocks. Pp. 17 in: Low Temperature Metamorphism(Frey, M., editor). Blackie, London.Google Scholar
Guilhaumou, N., Jouaffre, D., Velde, B. & Beny, C. (1988) Raman microprobe analysis on gaseous inclusions from the diagenetically altered Terres Noires. Bull Min. Ill, 577586.Google Scholar
Hunziker, J.C., Frey, M., Clauer, N., Dallmeyer, R.D., Friedrichsen, H., Flehmig, W., Hochstrasser, K., Roggwiler, P. & Schwander, H. (1986) The evolution of illite to muscovite: Mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrih. Min. Pet., 92, 157–180.Google Scholar
Jennings, S. & Thompson, G.R. (1986) Diagenesis of Plio-Pleistocene sediments of the Colorado River delta, southern California. J. Sed. Pet., 56, 89–98.Google Scholar
Kisch, H.J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. Pp. 513541 in: Diagenesis in Sediments and Sedimentary Rocks, 2(Larsen, G. & Chilingar, G.V., editors). Elsevier, Amsterdam.Google Scholar
Kisch, H.J. (1987) Correlation between indicators of very low-grade metamorphism. Pp. 227300 in: Low Temperature Metamorphism(Frey, M., editor). Blackie, London.Google Scholar
Kisch, H.J., Frey, M. (1987) Appendix: Effect of sample preparation on the measured 10 A peak width of illite (illite "crystallinity"). Pp. 301304 in: Low Temperature Metamorphism(M. Frey, editor). Blackie, London.Google Scholar
KluG, H.P. & Alexander, L.E. (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. Wiley, New York.Google Scholar
Kralik, M., Krumm, H. & Schramm, J.M. (1987) Low grade and very low grade metamorphism in the northern calcareous Alps and in the greywacke zone: Ulite-crystallinity data and isotopic ages. Pp. 164178 in: Geodynamics of the Eastern Alps (Fliigel, H.W. & Faupl, P., editors). Deuticke, Vienna.Google Scholar
Krumm, H. (1984) Anchimetamorphose im Anis und Ladin (Trias) der Nördlichen Kalkalpen zwischen Arlberg und Kaisergebirge-ihre Verbeitung und deren baugeschichtliche Bedeutung. Geol. Rdsch., 73, 223–257.Google Scholar
Kubler, B. (1964) Les argiles, indicateurs de metamorphisme. Rev. Inst. Frang. Petrol, 19, 1093–1112.Google Scholar
Kubler, B. (1967) La cristallinite de Tillite et les zones tout a fait superieures du metamorphisme. Pp. 105121 in: Etages Tectoniques (Collogue de Neuchatel). Inst. Geol. Neuchatel Univ.Google Scholar
Kubler, B., (1968) Evaluation quantitative du metamorphisme par la cristallinite de Tillite. Buii. Centre Rech. Pau-SNPA, 2, 385–397.Google Scholar
McHardy, W.J., Wilson, M.J. & Tait, J.M. (1982) Electron microscope and X-ray diffraction studies of filamentous illitic clay from sandstones of the Magnus Field. Clay Miner., 17, 23–39.Google Scholar
Nadeau, P.H. Wilson, M.J. McHardy, W.J. & Tait, J.M. (1984a) Interparticle diffraction: A new concept for interstratified clays. Clay Miner., 19, 757–769.Google Scholar
Nadeau, P.H. Wilson, M.J. McHardy, W.J. & Tait, J.M. (1984b) Interstratified clays as fundamental particles. Science, 225, 923–925.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249303 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Srodon, J. (1984) X-ray diffraction of illitic materials. Clays Clay Miner., 32, 337–349.Google Scholar
Srodon, J. & Eberl, D.D. (1984) Illite. Pp. 495544 in; Reviews in Mineralogy, 13, (Bailey, S.W., editor), Mineralogical Society of America, Washington, DC.Google Scholar
Sunagawa, I., Koshino, Y., Asakura, M. & Yamamoto, T. (1975) Growth mechanisms of some clay minerals. Fortschr. Miner., 52, 217–224.Google Scholar
Thompson, G.R. & Hower, J. (1975) The mineralogy of glauconite. Clays Clay Miner., 23, 289–300.Google Scholar
Velde, B., Suzuki, T. & Nicot, E. (1986) Pressure-temperature-composition of illite/smectite mixed-layer minerals: Niger Delta mudstones and other examples. Clays Clay Miner., 34, 435–441.Google Scholar