Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T08:05:52.818Z Has data issue: false hasContentIssue false

Calcretes, Palycretes and Silcretes in the Paleogene Detrital Sediments of the Duero and Tajo Basins, Central Spain

Published online by Cambridge University Press:  09 July 2018

M. Rodas
Affiliation:
Dpto. Cristalografía y Mineralogía, Fac. Geología, Universidad Complutense de Madrid, 28040 Madrid
F.J. Luque
Affiliation:
Dpto. Cristalografía y Mineralogía, Fac. Geología, Universidad Complutense de Madrid, 28040 Madrid
R. Mas
Affiliation:
Dpto. Cristalografía y Mineralogía, Fac. Geología, Universidad Complutense de Madrid, 28040 Madrid
M.G. Garzon
Affiliation:
Dpto. Cristalografía y Mineralogía, Fac. Geología, Universidad Complutense de Madrid, 28040 Madrid

Abstract

Three duricrust types (calcretes, palycretes and silcretes) have been distinguished in the Lower Paleogene arkosic materials from the margins of the Duero and Tajo basins (central Spain). In the calcretes the cements are composed of calcite plus palygorskite, whereas palygorskite is the only cement in the palycretes. In the silcretes, the cement consists chiefly of opal and chalcedony, with minor quartz. The important duricrust development in the Paleogene detrital materials can be correlated with a drastic climatic change towards colder and more arid conditions during this time, as inferred from the sedimentological features and the clay mineral evolution. The origin of calcretes and palycretes is related to the movement of alkaline phreatic waters generated from dolomitic rocks of Cretaceous age cropping out in the near surroundings. Silcretes originated from the vertical transfer of silica from supersaturated groundwaters, from the Hercynian granitic rocks, up to the surface. Silcretes are developed either on unconsolidated arkosic materials or replace previous calcrete or palycrete levels.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, A. (1981) El Cretácico de la provincia de Segovia (borde norte del Sistéma Central). Seminarios de Estrati- grafia. 7, 320 pp.Google Scholar
Arakel, A.V. (1986) Evolution of calcrete in palaeo- drainages of the Lake Napperby area, Central Australia. Palaeogeog., Palaeoclim., Palaeoecol, 54, 283303.Google Scholar
Blanco, J.A., Corrochano, A., Montigny, R. & Thuizat, R. (1982) Sur l’âge du debut de la sedimentation dans le bassin tertiaire du Duero (Espagne). Attribution au Paleocéne par datation isotopique des alunites de l’unite inférieure. C. R. Acad. Sci. Paris, série II, 295, 259262.Google Scholar
Botha, G.A. & Hughes, J.C. (1992) Pedogenic palygorskite and dolomite in a late Neogene sedimentary succession, northwestern Transvaal, South Africa. Geoderm, 53, 139154.CrossRefGoogle Scholar
Qagatay, M.N. (1990) Palygorskite in the Eocene rocks of the Dammam dome, Saudi Arabia. Clays Clay Miner, 38, 299307.Google Scholar
Curtis, C.D. (1990) Aspects of climatic influence on the clay mineralogy and geochemistry of soils, palaeosols and clastic sedimentary rocks. J. Geol. Soc. Londo, 147, 351357.Google Scholar
Fernández-Garcia, P., Mas, R., Rodas, M., Luque, F.J. & Garzon, M.G. (1989) Los depósitos aluviales del Paleó- geno basal en el sector suroriental de la cuenca del Duero (provincia de Segovia): Evolutión y minerales de la arcilla caracteristicos. Estudios Geol, 45, 27–13.Google Scholar
Goudie, A. (1972) The chemistry of world calcrete deposits. J. Geol, 80, 449463.Google Scholar
Goudie, A. (1973) Duricrusts in Tropical and Subtropical Landscapes. Clarendon Press. Oxford.Google Scholar
Goudie, A.S. (1983) Calcrete Pp. 93-131 in: Chemical Sediments and Geomorphology: Precipitates and Residua in the Near-surface Environment. (A.S. Goudie & K. Pye, editors). Academic Press, London.Google Scholar
Hay, R.L. & Wiggins, B. (1980) Pellets, ooids, sepiolite and silica in three calcretes of the southwestern United States. Sedimentology., 27, 559576.Google Scholar
Jones, B.F. & Galán, E. (1988) Sepiolite and palygorskite. Pp. 631-674 in: Hydrous Phyllosilicates (exclusive of micas). (S.W. Bailey, editor). Reviews in Mineralogy 19, Mineralogical Society of America, Washington, DC.Google Scholar
Klappa, C.F. (1983) A process-response model for the formation of pedogenic calcretes. Pp. 211-220 in Residual Deposits: Surface Related Weathering Processes and Materials. (R.C.L. Wilson, editor), Geological Society, Special Publ., 11, Blackwell Scientific Publications, Oxford.Google Scholar
Ledger, E.B. & Tieh, T.T. (1989) Opal-CT cement of pedogenic origin in the fluvial Catahoula Formation (Oligocene/Miocene), Texas Gulf Coastal Plain. Pp. 389-398 in: Weathering; its Products and Deposits. (S.S. Augustithis, editor). Theophrastus Publications, Athens.Google Scholar
Marshall, W.L. & Warakomski, J.M. (1980) Amorphous silica solubilities-II. Effect of aqueous salt solutions at 25°C. Geochim. Cosmochim. Act, 44, 915924.Google Scholar
Mas, R., Rodas, M., Luque, F.J., Fernández-García, P. & Garzon, M.G. (1988) Los niveles de encostramiento de la base del ciclo arcósico en el sector suroriental de la cuenca del Duero. II Congreso Geoldgico de Españ, 1, 127130.Google Scholar
Mas, R., Bernabeu, P., Garzon, M.G. & Rodas, M. (1989) Los niveles de silcreta del Paleógeno en el borde meridional de la cuenca del Tajo (provincia de Toledo). XII Congreso Español de Sedimentología. I, 253256.Google Scholar
McBride, E.F. (1989) Quartz cement in sandstones: A review. Earth Sci. Rev, 26, 69112.Google Scholar
Meyer, R. & Pena Dos Reis, R.B. (1985) Paleosols and alunite silcretes in continental Cenozoic of western Portugal. J. Sed. Petrol, 55, 7685.Google Scholar
Oehler, J.H. (1975) Origin and distribution of silica lepispheres in porcelanite from the Monterey Formation of California. J. Sed. Petrol, 45, 252257.Google Scholar
Ollier, C.D. Silcrete and weathering. Pp. 13-17 in: Silcrete in Australia (T. Langford-Smith, editor). Department of Geography, University of New England.Google Scholar
Rodas, M., Garzon, M.G., Luque, F.J. & Mas, R. (1990) Correlation between the Paleogene detrital facies in the margins of Tajo and Duero basins (Central Spain): Mineralogical, sedimentological and geomorphological characteristics. Sci. Géol., Mém, 88, 4352.Google Scholar
SAnchez, F.J. & Blanco, J.A. (1986) Formación de palygorskita asociada al flujo regional de las aguas subterráneas del borde SO de la cuenca del Duero. Estudios geol, 42, 321330.Google Scholar
Singer, A. (1980) The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth Sci. Rev, 15, 303326.Google Scholar
Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediments: a review. Earth Sci. Rev, 21, 251293.Google Scholar
Smale, D. (1973) Silcretes and associated silica diagenesis in Southern Africa and Australia. J. Sed. Petrol, 43, 10771089.Google Scholar
Summerfield, M.A. (1983a) Silcrete. Pp. 59-91 in: Chemical Sediments and Geomorphology: Precipitates and Residua in the Near-surface Environment. (A.S. Goudie & K. Pye, editors). Academic Press, London.Google Scholar
Summerfield, M.A. (1983b) La silcréte en Australie, en Afrique australe et en Grande-Bretagne: une revue de la litterature anglaise. Revue de Géologie Dynamique et de Géographic Physiqu, 21, 397–110.Google Scholar
Thiry, M. (1981) Sedimentation continentale et altérations associées: calcitisations, ferruginisations et silicifications. Les argiles plastiques du Sparnacien du bassin de Paris. Sci. Géol., Mem. 64, 173 pp.Google Scholar
Thiry, M. & Millot, G. (1987) Mineralogical forms of silica and their sequence of formation in silcretes. J. Sed. Petrol, 57, 343352.Google Scholar
Thiry, M. & Milnes, A.R. (1991) Pedogenic and groundwater silcretes at Stuart Creek opal field, South Australia. /. Sed. Petrol, 61, 111127.Google Scholar
Velde, B. (1985) Clay Minerals. A Physico-Chemical Explanation of their Occurrence. Developments in Sedimentology 40, Elsevier, Amsterdam.Google Scholar
Watts, N.L. (1980) Quaternary pedogenic calcretes from the Kalahari (southern Africa): mineralogy, genesis and diagenesis. Sedimentolog, 27, 661686.Google Scholar
Williams, L.A., Parks, G.A. & Crerar, D.A. (1985) Silica diagenesis, I. Solubility controls. J. Sed. Petrol, 55, 301311.Google Scholar
Wolfe, J. (1978) A paleobotanical interpretation of Tertiary climates in the Northern hemisphere. Am. Scientis, 66, 694903.Google Scholar
Wopfner, H. (1983) Environment of silcrete formation: a comparison of examples from Australia and the Cologne Embayment, West Germany. Pp. 151-158 in: Residual Deposits: Surface Related Weathering Processes and Materials (R.C.L. Wilson, editor), Geological Society, Special Publ., 11. Blackwell Scientific Publications, Oxford.Google Scholar
Wright, V.P. & Tucker, M.E. (1991) Calcretes: an introduction. Pp. 1-22 in: Calcretes. (V.P. Wright & M.E. Tucker, editors), The International Association of Sedi- mentologists, Reprint Series no.2. Blackwell Scientific Publications, Oxford.Google Scholar