Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T19:47:19.532Z Has data issue: false hasContentIssue false

Changes in clay organization due to structural iron reduction in a flooded vertisol

Published online by Cambridge University Press:  09 July 2018

F. Favre*
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC-LPE, Bat. GR, 1015 Lausanne, Switzerland
A. M. Jaunet
Affiliation:
Institut National de Recherche Agronomique (INRA), Science du sol, route de St Cyr, 78026 Versailles, France
M. Pernes
Affiliation:
Institut National de Recherche Agronomique (INRA), Science du sol, route de St Cyr, 78026 Versailles, France
M. Badraoui
Affiliation:
Agronomique Vétérinaire (IAV) Hassan II, BP. 6202, Rabat Instituts, Rabat, Morocco
P. Boivin
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC-LPE, Bat. GR, 1015 Lausanne, Switzerland
D. Tessier
Affiliation:
Institut National de Recherche Agronomique (INRA), Science du sol, route de St Cyr, 78026 Versailles, France

Abstract

The purpose of this study was to investigate the impact of redox-induced changes in the organization of the clay fraction of a bulk vertisol using transmission electron microscopy. Chemical and X-ray powder diffraction (XRD) analyses indicated that the oxidized clay was composed of 32% kaolinite and 68% non-pure smectitic material, mostly a dioctahedral beidellite with octahedral Fe, according to Quantarg2 and DecompXR models.

The cation exchange capacity of the soil increased from 26.1 to 65 cmolc+ kg-1 due to structural iron (FeStr) reduction and dissolution of oxide coatings. Transmission electron micrographs revealed dramatic changes upon reduction. Oxides were dissolved and the smectite increased in particle darkness, lateral extension, thickness, compactness and stacking order. These changes were interpreted to be a consequence of sorption of ferrous Fe and reduction of FeStr, as found in previous studies on pure Fe-bearing smectites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AFNOR (1996) Qualité des sols. 333 pp. AFNOR, Paris-La Défense, France.Google Scholar
Boivin, P., Favre, F., Hammecker C, Maeght, J.L., Delarivière, J., Poussin, J.C. & Wopereis, M.C.S. (2002) Processes driving soil solution chemistry in a flooded rice-cropped Vertisol. Analysis of long-time monitoring data. Geoderma, 110, 87–107.CrossRefGoogle Scholar
Badraoui, M. & Bloom, P.R. (1990) Iron rich high-charge beidellite in vertisols and mollisols of High Chaouia region of Morocco. Soil Science Society of America Journal, 54, 267–274.CrossRefGoogle Scholar
Bouabid, R. & Badraoui, M. (1995) Quantification minéralogique des argiles des sols et des sédiments par un model de bilan de masse associée à la diffraction des rayons-X. Terre et Eau, Revue Marocaine des Sciences Agronomiques, 24, 57–69.Google Scholar
Bouabid, R., Badraoui, M. & Bloom, P.R. (1991) Potassium fixation and charge characteristics of soil clays. Soil Science Society of America Journal, 55, 1493–1498.CrossRefGoogle Scholar
Bouabid, R., Badraoui, M., Bloom, P.R. & Daniane, M. (1996) The nature of smectites and associated interstratified minerals in soils of the Ghrab plain of Morocco. European Journal of Soil Science, 47, 165–174.CrossRefGoogle Scholar
Borchardt, G. (1989) Smectites. Pp. 675-727 in: Minerals in the Soil Environment (Dixon, J.B. & Weed, S.B., editors). Soil Science Society of America, Madison, Wisconsin.Google Scholar
Chen, S.Z., Low, P.F. & Roth, C.B. (1987) Relation between potassium fixation and the oxidation state of octahedral iron. Soil Science Society of America Journal, 51, 82–86.CrossRefGoogle Scholar
Ciesielski, H. & Sterckeman, T. (1997) Determination of cation exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions. Agronomie, 17, 1–7.Google Scholar
Ernstsen, V. (1996) Reduction of nitrate by Fe2+ in clay minerals. Clays and Clay Minerals, 44, 599–608.CrossRefGoogle Scholar
Ernstsen, V., Gates, W.P. & Stucki, J.W. (1998) Microbial reduction of structural iron in clays – A renewable source of reduction capacity. Journal of Environmental Quality, 27, 761–766.CrossRefGoogle Scholar
Favre, F. (2000) Interaction entre oxydoréduction et dynamiques salines dans un vertisol irrigué par submersion. PhD thesis n° 2132, Ecole Polytechnique Fédérale de Lausanne, Switzerland.Google Scholar
Favre, F., Tessier, D., Abdelmoula, M., Génin, J., Gates, W.P. & Boivin, P. (2002a) Iron reduction and changes in cation exchange capacity in intermittently waterlogged soil. European Journal of Soil Science, 53, 175–184.Google Scholar
Favre, F., Ernstsen, V., Tessier, D. & Boivin, P. (2002b) Short scale changes in soil properties due to structural iron reduction. Geochimica et Cosmochimica Acta, 66, A226.Google Scholar
Gates, W.P., Wilkinson, H.T. & Stucki, J.W. (1993) Swelling properties of microbially reduced ferruginous smectite. Clays and Clay Minerals, 41, 360–364.CrossRefGoogle Scholar
Gates, W.P., Stucki, J.W. & Kirkpatrick, R.J. (1996) Structural properties of reduced Upton montmorillonite. Physics and Chemistry of Minerals, 23, 535–541.CrossRefGoogle Scholar
Gates, W.P., Jaunet, A.-M., Tessier, D., Cole, M.A., Wilkinson, H.T. & Stucki, J.W. (1998) Swelling and texture of iron-bearing smectites reduced by bacteria. Clays and Clay Minerals, 46, 487–497.CrossRefGoogle Scholar
Greene-Kelly, R. (1953) The identification of montmorillonoids in clays. Journal of Soil Science, 4, 233–237.CrossRefGoogle Scholar
Khaled, E.M. & Stucki, J.W. (1991) Iron oxidation state effects on cation fixation in smectites. Soil Science Society of America Journal, 55, 550–554.CrossRefGoogle Scholar
Lahlou, M., Badraoui, M., Tessier, D. & Elsass, F. (2003) Quantarg2: un modèle linéaire de quantification des minèraux argileux des sols. Partie 1 : présentation du modèle. Homme-Terre et Eau, 126, 12–20.Google Scholar
Lanson, B. (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): A convenient way to study clay minerals. Clays and Clay Minerals, 45, 132–146.CrossRefGoogle Scholar
Lear, P.R. & Stucki, J.W. (1989) Effects of iron oxidation state on the specific surface area of nontronite. Clays and Clay Minerals, 37, 547–552.CrossRefGoogle Scholar
Manceau, A., Drits, V.A., Lanson, B., Chateigner, D., Wu, J., Huo, D., Gates, W.P. & Stucki, J.W. (2000) Oxidation-reduction mechanism of iron in dioctahedral smectites: II. Crystal chemistry of reduced Garfield nontronite. American Mineralogist, 85, 153–172.Google Scholar
Mehra, O.P. & Jackson, M.X. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 5, 317–327.Google Scholar
Moore, D.M. & Reynolds, R.J. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Pp. 260–289. Oxford University press, New York.Google Scholar
Ponnamperuma, F.N. (1972) The chemistry of submerged soils. Advances in Agronomy, 24, 29–96.Google Scholar
Robert, M. & Tessier, D. (1974) Méthode de préparation des argiles des sols pour des études minéralogiques. Annales Agronomiques, 25, 859–992.Google Scholar
Roth, C.B., Jackson, M.L. & Syers, J.K. (1969) Deferration effect on structural ferrous-ferric iron ration and CEC of vermiculites and soils. Clays and Clay Minerals, 17, 253–264.CrossRefGoogle Scholar
Schneiders, M. & Sherer, H.W. (1998) Fixation and release of ammonium in flooded rice soils as affected by redox potential. European Journal of Agronomy, 8, 181–189.CrossRefGoogle Scholar
Shen, S., Stucki, E.M. & Boast, C.W. (1992) Effects of structural iron reduction on the hydraulic conductivity of Na-smectite. Clays and Clay Minerals, 40, 381–386.CrossRefGoogle Scholar
Stanjek, H., Niederbudde, E.A & Hâusler, W. (1992) Improved evaluation of layer charge of n-alkylammonium-treated fine soil clays by Lorentz- and polarization-correction and curve-fitting. Clay Minerals, 27, 3–19.CrossRefGoogle Scholar
Stucki, J.W. (1988) Structural iron in smectite. Pp. 625–675 in: Iron in Soils and Clay Minerals (Stucki, J.W., Goodman, B.A. & Schwertmann, U., editors). Kluwer, Dordrecht, The Netherlands.Google Scholar
Stucki, J.W. (1997) Redox processes in smectites: soil environmental significance. Pp. 395–406 in: Advances in GeoEcology (Auerswald, K., Stanjek, H. & Bigham, J.M., editors). Catena Verlag, Reiskirchen, Germany.Google Scholar
Stucki, J.W. & Tessier, D. (1991) Effects of iron oxidation state on the texture and structural order of Na-nontronite gels. Clays and Clay Minerals, 39, 137–143.CrossRefGoogle Scholar
Stucki, J.W., Bailey, G.W. & Gan, H. (1996) Oxidationreduction mechanisms in iron-bearing phyllosili cates. Applied Clay Science 10, 417–430.CrossRefGoogle Scholar
Tessier, D. (1984) Etude expérimentale de l'organisation des matériaux argileux. Hydratation, gonflement et structuration au cours de la dessication et de la réhumectation. PhD thesis, INRA, Paris.Google Scholar
van Breemen, N. (1988) Long-term chemical, mineralogical, and morphological effects of iron-redox processes in periodically flooded soils. Pp. 811–823 in: Iron in Soils and Clay Minerals (Stucki, J.W., Goodman, B.A. & Schwertmann, U., editors), Kluwer, Dordrecht, The Netherlands.Google Scholar
Wu, J., Low, P.F. & Roth, C.B. (1989) Effects of octahedral-iron reduction and swelling pressure on interlayer distances in Na-nontronite. Clays and Clay Minerals, 37, 211–218.Google Scholar
Yan, L. & Stucki, J.W. (1999) Effects of structural Fe oxidation state on the coupling of interlayer water and structural Si-O stretching vibrations in montmorillonite. Langmuir, 15, 4648–4657.CrossRefGoogle Scholar
Yan, L. & Stucki, J.W. (2000) Structural perturbations in the solid-water interface of redox transformed nontronite. Journal of Colloid and Interface Science, 225, 429–439.CrossRefGoogle ScholarPubMed