Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T10:56:38.765Z Has data issue: false hasContentIssue false

Chemically modified smectites

Published online by Cambridge University Press:  09 July 2018

P. Komadel*
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-845 36 BratislavaSlovakia
*
*E-mail: uachkomp@savba.sk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper summarizes recent results obtained on chemical modifications of smectites. These include replacement of exchangeable cations with protons, a process connected with smectite autotransformation – attack of protons on the layers and liberation of central atoms from the octahedral and tetrahedral sheets, causing modification of the acid sites on the particles. More severe modifications occur during dissolution in inorganic acids, when the layers are dissolved and threedimensional amorphous silica is formed. The negative charge on the smectite layers can be increased via reduction of structural Fe(III) to Fe(II) or decreased via fixation of small exchangeable cations, such as Li+, upon treatment at elevated temperatures. Heating for 24 h at different temperatures between 100 and 300ºC leads to a series of chemically similar materials of different charge, prepared from the same parent mineral. Such series are suitable for investigation of the effect of the layer charge on selected properties of smectites. Fe(II) can be partly stabilized in reduced smectites by Li fixation upon heating.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2003 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

References

Adams, J.M. (1987) Synthetic organic chemistry using pillared, cation-exchanged and acid-treated montmorillonite catalysts – A review. Applied Clay Science, 2, 309342.CrossRefGoogle Scholar
Barshad, I. (1969) Preparation of H saturated montmorillonites. Soil Science, 108, 3842.CrossRefGoogle Scholar
Breen, C., Forsyth, J., Yarwood, J. and Hughes, T. (2000) Thermal desorption-degradation of cyclohexylamine over Ni2+- and Al3+-exchanged bentonite studied using evolved gas analysis (TG-EGA) and diffuse reflecta nce spectrosc opy (DRIFTS). Physical Chemistry Chemical Physics, 2, 3887 3892.CrossRefGoogle Scholar
Breen, C., Madejová, J. & Komadel, P. (1995a) Characterisation of moderately acid-treated, sizefractionated montmorillonites using IR and MAS NMR spectroscopy and thermal analysis. Journal of Materials Chemistry, 5, 469474.CrossRefGoogle Scholar
Breen, C., Madejová, J. & Komadel, P. (1995b) Correlation of catalytic activity with infrared-red, 29Si MAS NMR and acidity data for HCl-treated fine fractions of montmorillonites. Applied Clay Science, 10, 219 230.CrossRefGoogle Scholar
Breen, C., Watson, R., Madejová J., Komadel, P. & Klapyta, Z. (1997a) Acid-activated organoclays: Preparation, characterisation and catalytic activity of acid-treated tetra-alkylammonium exchanged smectites. Langmuir, 13, 64736479.CrossRefGoogle Scholar
Breen, C., Zahoor, F.D., Madejová J. & Komadel, P. (1997b) Characterisation and catalytic activity of acid treated, size fractionated smectites. Journal of Physical Chemistry B, 101, 53245331.CrossRefGoogle Scholar
Brown, D.R. (1994) Review: Clays as catalyst and reagent supports. Geologica Carpathica, Series Clays, 45, 4556.Google Scholar
Bujdák, J. & Komadel, P. (1997) Interaction of methylene blue with reduced charge montmorillonite. Journal of Physical Chemistry B, 101, 90659068.CrossRefGoogle Scholar
Bujdák, J., Janek, M., Madejová J. & Komadel, P. (1998) Influence of the layer charge density of smectites on the interaction with methylene blue. Journal of Chemical Society, Faraday Transaction s, 94, 34873492.CrossRefGoogle Scholar
Bujdák, J., Janek, M., Madejová J. & Komadel, P. (2001) Methylene blue interactions with reduced charge smectites. Clays and Clay Minerals, 49, 244254.CrossRefGoogle Scholar
Bujdák, J., Petrovič ová, I. & Slosiariková, H. (1992) Study of water – reduced charge montmorillonite system. Geologica Carpathica, Series Clays, 43, 109 111.Google Scholar
Bujdák, J., Slosiariková, H., Nováková, L. & Číčel, B. (1991) Fixation of lithium cations in montmorillonite. Chemical Papers, 45, 499507.Google Scholar
Calvet, R. & Prost, R. (1971) Cation migration into empty octahedral sites and surface properties of clays. Clays and Clay Minerals, 19, 175186.CrossRefGoogle Scholar
Číčel, B. & Komadel, P. (1994) Structural formulae of layer silicates. Pp. 114136 in: Quantitativ e Methods in Soil Mineralogy (Amonette, J.E. & Zelazny, L.W., editors). Soil Science Society of America Miscellaneous Publications, Soil Science Society of America, Madison, Wisconsin.Google Scholar
Fahn, R. & Fenderl, K. (1983) Reaction products of organic dye molecules with acid-treated montmorillonite. Clay Minerals, 18, 447458.CrossRefGoogle Scholar
Farmer, V.C. (1974) Layer silicates. Pp. 331 363 in: Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph 4, Mineralogical Society, London.CrossRefGoogle Scholar
Gates, W.P., Komadel, P., Madejová, J., Bujdák, J., Stucki, J.W. & Kirkpatrick, R.J. (2000) Electronic and structural properties of reduced-charge montmorillonites. Applied Clay Science, 16, 257271.CrossRefGoogle Scholar
Gates, W.P., Madejová, J., Janek, M. & Komadel, P. (1996) Spectroscopic study of hectorite dissolution in HCl. Acta Universitas Carolinae Geologica 38, 183191.Google Scholar
Greene-Kelly, R. (1953) The identification of montmorillonoids in clays. Journal of Soil Science, 4, 233237.CrossRefGoogle Scholar
Hähner, G., Marti, A., Spencer, N.D. & Caseri, W.R. (1996) Orientation and electronic structure of methylene blue on mica: A near edge X-ray absorption structure spectroscopic study. Journal of Chemical Physics, 104, 77497757.CrossRefGoogle Scholar
Hofmann, U. & Klemen, R. (1950) Verlust der Austauschfähigkeit von Lithiuminonen an Bentonit durch Erhitzung. Zeitschrift für anorganische und allgemeine Chemie, 262, 9599.CrossRefGoogle Scholar
Hrobáriková, J. & Komadel, P. (2002) Sorption properties of reduced charge montmorillonit e. Geologica Carpathica, 53, 9398.Google Scholar
Hrobáriková, J., Madejová, J. & Komadel, P. (2001) Effect of heating temperature on Li fixation, layer charge and properties of fine fractions of bentonites. Journal of Materials Chemistry, 11, 1452 1457.CrossRefGoogle Scholar
Jagie€€o, J. (1994) Stable numerical solution of the adsorption integral equation using splines. Langmuir, 10, 2778 2785.CrossRefGoogle Scholar
Janek, M. & Komadel, P. (1993) Autotransformation of H-smectites in aqueous solution. Effect of octahedral iron content. Geologica Carpathica Series Clays, 44, 5964.Google Scholar
Janek, M. & Komadel, P. (1999) Acidity of proton saturated and autotransformed smectites characterised with proton affinity distribution. Geologica Carpathica, 50, 373378.Google Scholar
Janek, M., Komadel, P. & Lagaly, G. (1997) Effect of autotransformation on the layer charge of smectites determined by the alkylammonium method. Clay Minerals, 32, 623632.CrossRefGoogle Scholar
Janek, M. & Lagaly, G. (2001) Proton saturation and rheological properties of smectite dispersions. Applied Clay Science, 19, 121 130.CrossRefGoogle Scholar
Jankovič, L’. & Komadel, P. (2000) Catalytic properties of a heated ammonium-saturated dioctahedral smecti te. Coll ect ion of Czechoslo vak Chemical Communications, 65, 1527 1536.CrossRefGoogle Scholar
Jaynes, W.F. & Bigham, J.M. (1987) Charge reduction, octahedral charge, and lithium retention in heated, Li-saturated smectites. Clays and Clay Minerals, 35, 440448.CrossRefGoogle Scholar
Karakass ides, M.A., Madejová, J., Arvaiová, B., Bourlinos, A., Petridis, D. & Komadel, P. (1999) Location of Li(I), Cu(II), and Cd(II) in heated montmorillonite: Evidence from specular reflectance infrared and electron spin resonance spectroscopies. Journal of Materials Chemistry, 9, 15531558.CrossRefGoogle Scholar
Komadel, P. & Číčel, B. (1987) Sedimentation volumes of H-montmorillonites. I. The effect of the conditions of prepara tion. Ceramics-Silik á ty, 31, 247253.Google Scholar
Komadel, P. & Číčel, B. (1988) Sedimentation volumes of H-montmorillonites. II. Influence of anions and temperature. Proceedings of 10th Conference on Clay Mineralogy and Petrology, Ostrava 1986, (Konta, J., editor), 267 272.Google Scholar
Komadel, P. & Číčel, B. (1991) Sedimentation volumes of H-montmorillonites. III. Natrification. Ceramics- Siliká ty, 35, 121 126.Google Scholar
Komadel, P. & Schomburg, J. (1993) Swelling of acid treated bentonites. Ceramics-Silikáty, 37, 9799.Google Scholar
Komadel, P., Lear, P.R. & Stucki, J.W. (1990) Reduction and reoxidation of nontronite: Extent of reduction and reaction rates. Clays and Clay Minerals, 38, 203208.CrossRefGoogle Scholar
Komadel, P., Stucki, J.W. & Číčel, B. (1993) Readily HCl-soluble iron in the fine fractions of some Czech bentonites. Geologica Carpathica. Series Clays, 44, 1116.Google Scholar
Komadel, P., Madejová J. & Stucki, J.W. (1995) Reduction and reoxidation of nontronite: Questions of reversibility. Clays and Clay Minerals, 43, 105110.CrossRefGoogle Scholar
Komadel, P., Bujdák, J., Madejová, J., Šucha, V. & Elsass, F. (1996a) Effect of non-swelling layers on the dissolution of reduced-charge montmorillonite in hydrochloric acid. Clay Minerals, 31, 333 345.CrossRefGoogle Scholar
Komadel, P., Madejová J., Janek, M., Gates, W.P., Kirkpatrick, R.J. & Stucki, J.W. (1996b) Dissolution of hectorite in inorganic acids. Clays and Clay Minerals, 44, 228 236.CrossRefGoogle Scholar
Komadel, P., Janek, M., Madejová J., Weekes, A. & Breen, C. (1997) Acidity and catalytic activity of mildly acid-treated Mg-rich montmorillonite and hectorite. Journal of Chemical Society, Faraday Transactions, 93, 42074210.CrossRefGoogle Scholar
Komadel, P., Madejová J. & Stucki, J. W. (1999) Partial stabilization of Fe(II) in reduced ferruginous smectite by Li fixation. Clays and Clay Minerals, 47, 458465.CrossRefGoogle Scholar
Komadel, P., Madejová J., Laird, D.A., Xia, Y. & Stucki, J. W. (2000) Reduction of Fe(III) in griffithite. Clay Minerals, 35, 625 634.CrossRefGoogle Scholar
Komadel, P., Hrobá riková, J., SmrčokL’. & Koppelhuber-Bitschnau, B. (2002) Hydration of reduced-charge montmorillonite. Clay Minerals, 37, 543550.CrossRefGoogle Scholar
Lintnerová, O., Šucha, V. & Streško, V. (1999) Mineralogy and geochemistry of acid mine Feprecipitates from the main Slovak mining regions. Geologica Carpathica, 50, 395404.Google Scholar
Low, P.F. (1980) The swelling of clay. I I . Montmorillonites. Soil Science Society of America Journal, 44, 667 676.CrossRefGoogle Scholar
Luca, V. & MacLachlan, D.J. (1992) Site occupancy in nontronite studied by acid dissolution and Mössbauer spectroscopy. Clays and Clay Minerals, 40, 1 7.CrossRefGoogle Scholar
Madejová, J., Arvaiová, B. & Komadel, P. (1999) FTIR spectroscopic characterisation of thermally treated Cu2+, Cd2+, and Li+ montmorillonites. Spectrochimica Acta A, 55, 24672476.CrossRefGoogle Scholar
Madejová, J., Bujdák, J., Gates, W.P. & Komadel, P. (1996) Preparation and infrared spectroscopic characterization of reduced-charge montmorillonite with various Li contents. Clay Minerals, 31, 233 241.CrossRefGoogle Scholar
Madejová, J., Bujdák, J., Janek, M. & Komadel, P. (1998) Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite. Spectrochimica Acta A, 54, 1397 1406.CrossRefGoogle Scholar
Madejová, J., Bujdák, J., Petit, S. & Komadel, P. (2000a) Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (I) Mid-infrared region. Clay Minerals, 35, 739751.CrossRefGoogle Scholar
Madejová, J., Bujdák, J., Petit, S. & Komadel, P. (2000b) Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (II) Near-infrared region. Clay Minerals, 35, 753–751.CrossRefGoogle Scholar
Manceau, A., Drits, V.A., Lanson, B., Chateigner, G., Wu, J., Huo, D., Gates, W.P. & Stucki, J.W. (2000) Oxidation-reduction mechanisms of iron in dioctahedral smectites. 1. Structural chemistry of oxidized reference nontronites. American Mineralogist, 85, 133152.CrossRefGoogle Scholar
Moenke, H.H.W. (1974) Silica, the three-dimensional silicates, borosilicates, and berylium silicates. Pp.365382 in. Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph 4, Mineralogi cal Society, London.CrossRefGoogle Scholar
Norrish, K. (1954) The swelling of montmorillonites. Discussions of Faraday Society, 18, 120 134.CrossRefGoogle Scholar
Novák, I. & Číčel, B. (1978) Dissolution of smectites in hydrochloric acid: II. Dissolution rate as a function of crystallochemical composition. Clays and Clay Minerals, 26, 341 344.CrossRefGoogle Scholar
Osthaus, B.B. (1956) Chemical determination of tetrahedral ions in nontronite and montmorillonite. Clays and Clay Minerals, 2, 404417.CrossRefGoogle Scholar
Rhodes, C. N. & Brown, D. R. (1994) Catalytic activity of acid-treated montmorillonite in polar and nonpolar reaction media. Catalysi s Letters, 24, 285 291.CrossRefGoogle Scholar
Sanchez-Soto, P., Sobrados, I., Sanz, J. & Perez- Rodriguez, J.L. (1993) 29-Si and 27-Al MAS NMR study of the thermal transformations of pyrophyllite. Journal of the American Ceramic Society, 76, 30243028.CrossRefGoogle Scholar
Siddiqui, M.H.K. (1968) Bleaching Earths. Pergamon Press, London.CrossRefGoogle Scholar
Stucki, J.W. (1988) Structural iron in smectites. Pp. 625 675 in: Iron in Soils and Clay Minerals, (Stucki, J.W., Goodman, B.A. & Schwertmann, U., editors). Reidel, D., Dordrecht, The Netherlands.CrossRefGoogle Scholar
Tkáč, I., Komadel, P. & Müller, D. (1994) Acid-treated montmorillonites – a study by 29Si and 27Al MAS NMR. Clay Minerals, 29, 1119.CrossRefGoogle Scholar