Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T10:45:22.908Z Has data issue: false hasContentIssue false

Chemistry, morphology and structural characteristics of synthetic Al-lizardite

Published online by Cambridge University Press:  09 July 2018

M. Bentabol*
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía. Facultad de Ciencias. Universidad de Málaga, Spain
M. D. Ruiz Cruz
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía. Facultad de Ciencias. Universidad de Málaga, Spain
I. Sobrados
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, 28049 Madrid, Spain
*

Abstract

Al-lizardite has been synthesized under hydrothermal conditions (200ºC). Morphologically, Al-lizardite consists of thin platy particles ~400 Å wide and ~150 Å thick. Structurally, the X-ray diffraction patterns indicate that the 2H2 polytype is dominant, with cell parameters: a = 5.311(0.006) Å; c = 14.333 (0.013) Å and space group P63. High-resolution transmission electron microscopy images revealed, however, the presence of other polytypes and abundant stacking disorder. Chemically, Al-lizardite consists of a single population with average tetrahedral composition Si1.74Al0.26. In contrast to previously described Al-rich serpentines (amesite and Al-lizardite), this Al-lizardite is characterized by an asymmetrical Al distribution, with VIAl ≈0.70 and IVAl ≈0.25 atoms per formula unit.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1980) Structures of layer silicates. Pp. 1123 in: Crystal Structures of Clay Minerals and their X-ray Identification. (Brindley, G.W. & Brown, G., editors) Monograph 5, Mineralogical Society, London.Google Scholar
Bailey, S.W. (1991) Structures and composition of other trioctahedral 1:1 phyllosilicates. Pp. 169188 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor) Reviews in Mineralogy, 19, Mineralogical Society of America, Washington D.C., USA.Google Scholar
Bates, T.F. (1959) Morphology and crystal chemistry of 1:1 layer lattice silicates. American Mineralogist, 44, 78114.Google Scholar
Bentabol, M., Ruiz Cruz, M.D., Huertas, F.J. & Linares, J. (2006) Hydrothermal synthesis of Mg- and Mg-Nirich kaolinite. Clays and Clay Minerals, 54, 667677.CrossRefGoogle Scholar
Bentabol, M., Ruiz Cruz, M.D. & Huertas, F.J. (2007) Synthesis of Ni-rich 1:1 phyllosilicates. Clays and Clay Minerals, 55, 572582.CrossRefGoogle Scholar
Bentabol, M., Ruiz Cruz, M.D. & Huertas, F.J. (2009) Hydrothermal synthesis (200°C) of Co-kaolinite and Al-Co-serpentine. Applied Clay Science, 42, 649656.CrossRefGoogle Scholar
Bobos, I., Duplay, J., Rocha, J. & Gomes, C. (2001) Kaolinite to halloysite-7Å transformation in the kaolin deposit of Sao Vicente de Pereira, Portugal. Clays and Clay Minerals, 49, 596607.CrossRefGoogle Scholar
Chernosky, J.V. (1975) Aggregate refractive indices and unit cell parameters of synthetic serpentine in the system MgO-Al2O3-SiO2-H2O. American Mineralogist, 60, 200208.Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp 331365 in: The Infrared Spectra of Minerals. (Farmer, V.C., editor) Monograph 4, Mineralogical Society, London.CrossRefGoogle Scholar
Gillery, F.H. (1959) The X-ray study of synthetic Mg-Al serpentines and chlorites. American Mineralogist, 44, 143152.Google Scholar
González Jesús, J., Huertas, F.J., Linares, J. & Ruiz Cruz, M.D. (2000) Textural and structural transformations of kaolinites in aqueous solutions. Applied Clay Science, 17, 245263.CrossRefGoogle Scholar
Hayashi, S., Ueda, T., Hayamizu, K. & Akiba, E. (1992) NMR study of kaolinite. 1. 29Si, 27A1 and 1H spectra. Journal of Physical Chemistry, 96, 1092210928.CrossRefGoogle Scholar
Jasmund, K. & Sylla, H.M. (1971) Synthesis of Mg- and Ni-antigorite: a correction. Contributions to Mineralogy and Petrology, 34, 8486.CrossRefGoogle Scholar
Komarneni, S., Fyfe, C.A. & Kennedy, G.J. (1985) Orderdisorder in 1:1 type clay minerals by solid-state 27A1 and 29Si magic-angle-spinning NMR spectroscopy. Clay Minerals, 20, 327334.CrossRefGoogle Scholar
Lorimer, G.W. & Cliff, G. (1976) Analytical electron microscopy of minerals. Pp. 506519 in: Electron Microscopy in Mineralogy. (Wenk, H.R., editor). Springer-Verlag, New York, USA.CrossRefGoogle Scholar
Maksimovic, Z. & Bish, D. (1978) Brindleyite, a nickelrich aluminous serpentine mineral analogous to berthierine. American Mineralogist, 63, 484489.Google Scholar
Martin, J.D. (2004) Using XPowder: A software package for Powder X-ray diffraction analysis, http://www.xpowder.com.Google Scholar
Moore, D.M. & Hughes, R.E. (2000) Ordovician and Pennsylvanian berthierine-bearing flint clays. Clays and Clay Minerals, 48, 145149.CrossRefGoogle Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1128 in: Chemistry of Clays and Clay Minerals. (Newman, A.C.D. & Brown, G., editors) Monograph 6, Mineralogical Society, London.Google Scholar
Newman, R.H., Childs, C.W. & Churchman, G.J. (1994) Aluminium coordination and structural disorder in halloysite and kaolinite by 27A1 NMR spectroscopy. Clay Minerals, 29, 305312.CrossRefGoogle Scholar
Roy, D.M. & Roy, R. (1954) An experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals. American Mineralogist, 39, 957975.Google Scholar
Ruiz Cruz, M.D. & Barceló, G. (1984) Zonación mineralógica en el contacto de un cuerpo intrusivo básico (Trias de la Dorsal Bética). Boletín Geológico y Minero de España, 95, 5567.Google Scholar
Serna, C.J., Velde, B.D. & White, J.L. (1977) Infrared evidence of order-disorder in amesites. American Mineralogist, 62, 296303.Google Scholar
Serna, C.J., White, J.L. & Velde, B.D. (1979) The effect of aluminium on the infrared spectra of 7 Å trioctahedral minerals. Mineralogical Magazine, 43, 141148.CrossRefGoogle Scholar
Serna, C.J., Velde, B.D. & White, J.L. (1982) The IR spectra of ordered amesites. American Mineralogist, 67, 10051006.Google Scholar
Singh, B. & Cornelius, M. (2006) Geochemistry and mineralogy of the regolith profile over the Aries kimberlite pipe, Western Australia. Geochemistry, 6, 311323.Google Scholar
Slack, J.F., Jiang, W.T., Peacor, D.R. & Okita, P.M. (1992) Hydrothermal and metamorphic berthierine from the Kidd Creek volcanogenic massive sulfide deposit, Timmins, Ontario. The Canadian Mineralogist, 30, 11271142.Google Scholar
Velde, B. (1980) Ordering in synthetic aluminous serpentines; infrared spectra and cell dimensions. Physics and Chemistry of Minerals, 6, 209220.CrossRefGoogle Scholar
Weisse, G. (1967) Sur la présence de nickel dans un gisement de bauxite près de Mégare. Mineralium Deposita, 2, 349356.CrossRefGoogle Scholar
Wicks, F.J. & O'Hanley, D.S. (1991) Serpentine minerals: structures and petrology. Pp. 91167 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor) Reviews in Mineralogy, 19, Mineralogical Society of America, Washington D.C., USA.Google Scholar