Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T09:13:49.202Z Has data issue: false hasContentIssue false

Clay stability in clay-dominated soil systems

Published online by Cambridge University Press:  09 July 2018

D. Righi
Affiliation:
Laboratoires de Pédologie et Pétrologie des Altérations Hydrothermales, UA 721, CNRS, Faculté des Sciences, 86022 Poitiers Cedex
B. Velde
Affiliation:
Laboratoires de Pédologie et Pétrologie des Altérations Hydrothermales, UA 721, CNRS, Faculté des Sciences, 86022 Poitiers Cedex Département de Géologie, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
A. Meunier
Affiliation:
Laboratoires de Pédologie et Pétrologie des Altérations Hydrothermales, UA 721, CNRS, Faculté des Sciences, 86022 Poitiers Cedex

Abstract

Seven samples from a chronosequence of soils developed in historically created polders on the Atlantic coast (Marais Poitevin, Vendée, France) were investigated in order to illustrate the rate of mineralogical change in a clay-dominated system. The oldest polder was constructed in 1665, the last one in 1912; thus the time span of soil evolution is from 80 to 330 years. All the samples had more than 50% clay (<2 μm). The most reactive, fine clay sub-fraction (<0.1 μm) was investigated in detail by X-ray diffraction and chemical analysis. The observed mineralogical changes with increasing age followed the schematic reaction:

smectite + mica = illite + mixed-layer minerals.

The progress of reaction in time appears to be non-linear. This reaction seems to occur in a chemically constant system, and the mineralogical change can be seen as a readjustment of species to a given chemical composition.

Resume

Resume

Sept échantillons d'une chronoséquence de sols de polders de la côte Atlantique (Marais Poitevin, Vendée, France) ont été étudiés dans le but d'apprécier la cinétique des transformations minéralogiques dans des sols très argileux. Le polder le plus ancien est daté de 1665, le plus récent de 1912. La durée d'évolution des sols s'échelonne donc de 80 à 330 années. Tousles échantillons one une teneur en argile (<2 μm) supérieure à 50%. La fraction d'argile fine (<0.1 μm) considérée comrne la plus réactive a été étudiée de façon détaillée par diffraction de rayons X et analyse chimique. Avec le temps les changements minéralogiques suivent la réaction:

smectite + mica = illite + interstratifiés.

La progression de la réaction n'est pas linéaire et elle semble se produire dans un système chimiquement invariant. Les changements minéralogiques peuvent être considérés comme un réajustement des structures minéralogiques aux conditions chimiques du systéme.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bain, D.C. (1977) The weathering of chloritic minerals in some Scottish soils. J. Soil Sci. 28, 144–164.Google Scholar
Bourcart, J. (1958) Le littoral de la Tranche (Vendée) à l'lle Madame (Charente-Maritime). Bull Soc. Geol. Fr. 3, 393–397.Google Scholar
Eberl, D., Środorń, J. & Northrop, H.R. (1986) Potassium fixation in smectite by wetting and drying. Pp. 296—326 in. Geochemical Process at Mineral Surfaces (Davis, J. A. & Hayes, K. F., editors). American Chemical Society Symposium Series 323.Google Scholar
Eberl, D., Velde, B. & Mccormick, T. (1993) Synthesis of illite-smectite from smectite at Earth surface temperatures and high pH. Clay Miner. 28, 49—60.Google Scholar
Gravier, J. (1949) Le Marais Poitevin. Bull. Soc. Belge d'Etudes Geogr. XVIII, 37–55.Google Scholar
Jeanroy, E. (1972) Analyse totale des silicates naturels par spectrophotométrie d'absorption atomique. Application au sol et à ses constituants. Chim. Anal. 54, 159–166.Google Scholar
Lanson, B. (1990) Mise en évidence des mécanismes de transformation des interstratifiés illite/ smectite au cours de la diagenèse. PhD thesis, Univ. Paris 6-Jussieu, France.Google Scholar
Lanson, B. (1993) DECOMPXR, X-ray decomposition program. ERM (Sarl), Poitiers, France.Google Scholar
Lanson, B. & Besson, G. (1992) Characterization of the end of smectite-to-illite transformation: decomposition of the X-ray patterns. Clays Clay Miner. 40, 40–52.CrossRefGoogle Scholar
Lanson, B. & Velde, B. (1992) Decomposition of X-ray diffraction patterns: a convenient way to describe complex I/S diagenetic evolution. Clays Clay Miner. 40, 629–643.Google Scholar
Lowe, D.J. (1986) Controls on the rates of weathering and clay mineral genesis in airfall tephras: a review and New Zealand case study. Pp. 265—330 in: Rates of Chemical Weathering of Rocks and Minerals (Colman, S. M. & Dethier, D. P., editors). Academic Press, New York.Google Scholar
Mamy, J. & Gaultier, J-P. (1976) Les phénomènes de diffraction des rayonnements X et é1ectroniques par les réseaux atomiques; application à l'étude de l'ordre cristallin dans les minéraux argileux-II. Evolution structurale de la montmorillonite associée au phénomène de fixation irréversible du potassium. Ann. Agron. 27, 1–16.Google Scholar
Meunier, A. & Velde, B. (1976) Mineral reactions at grain contacts in early stages of granite weathering. Clay Miner. 11, 235–240.Google Scholar
Protz, R., Ross, G.J., Martini, I.P. & Terasmae, J. (1984) Rate of podzolic soil formation near Hudson Bay Ontario. Can. J. Soil Sci. 64, 31–49.Google Scholar
Reynolds, R.C. (1985) Description of Program NEW-MOD for the Calculation of the One-Dimensional X-ray Diffraction Patterns of Mixed-Layered Clays. Reynolds, R. C., 8 Brook Road, Hanover, New Hampshire, USA.Google Scholar
Righi, D., Petit, S. & Bouchet, A. (1993) Characterization of hydroxy-interlayered vermiculite and illite/ smectite interstratified minerals from the weathering of chlorite in a Cryorthod. Clay Clay Miner. 41, 484–495.Google Scholar
Ugolini, F.C. (1968) Soil development and alder invasion in a recently deglaciated area of Glacier Bay, Alaska. Pp. 115–140 in: Biology of Alder (Trappe, J. M. & Franklin, J. F., editors), Pacific Northwest Forest and Range Experiment Station, Forest Station, USDA, Portland, Oregon, USA.Google Scholar
Velde, B. (1985) Clay Minerals: A Physico-Chemical Explanation of their Occurrence. Elsevier, Amsterdam, 427pp.Google Scholar
Velde, B. & Hjima, A. (1988) Comparison of clay and zeolite mineral occurrences in Neogene age sediments from deep wells. Clay Clay Miner. 36, 337–342.CrossRefGoogle Scholar