Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T08:57:21.489Z Has data issue: false hasContentIssue false

Diagenetic history of the Podhale-Orava Basin and the underlying Tatra sedimentary structural units (Western Carpathians): evidence from XRD and K-Ar of illite-smectite

Published online by Cambridge University Press:  09 July 2018

J. Środoń*
Affiliation:
Institute of Geological Sciences PAN, Senacka 1, 31002 Kraków, Poland
M. Kotarba
Affiliation:
Institute of Geological Sciences PAN, Senacka 1, 31002 Kraków, Poland
A. Biroň
Affiliation:
Geological Institute, Slovak Academy of Sciences, Severná 5, 97401 Banská , Bystrica, Slovakia
P. Such
Affiliation:
Oil and Gas Institute, Lubicz 25a, 31503 Kraków, Poland
N. Clauer
Affiliation:
Centre de Geochimie de la Surface CNRS-ULP, 1, rue Blessig, 67084 Strasbourg, France
A. Wójtowicz
Affiliation:
Institute of Geological Sciences PAN, Senacka 1, 31002 Kraków, Poland

Abstract

Diagenesis in the Podhale and Orava Paleogene flysch basins and in the underlying Mesozoic structural units was studied by XRD measurement of the percent smectite in the mixedlayer illite-smectite from shales and K-Ar dating of the illite-smectite from bentonites, supported by XRD quantitative mineral analysis, grain density, and porosity measurements of the bulk shales. The diagenetic mineral reactions identified in the flysch shales include illitization of smectite (>60 to <5%S), dissolution of K-feldspar and kaolinite, crystallization of quartz, albite and chlorite. An unusually large amount of basin history information was obtained by combining the illite-smectite data from wells and from the present erosional surface of the basin.

The rocks underwent burial diagenesis at a stable geothermal gradient similar to the present-day value of 21±2°C/km. The maximum burial temperatures were reached very quickly (high sedimentation rate) close to the basin inversion time, at ∼17 Ma in the western part and 18 Ma in the eastern part.

The basin floor, which included the present-day Tatra Mts., was inclined towards the East. The thickness of the sedimentary filling of the basin ranged from 3.5–4.5 km in the western Tatra (removed entirely), to 5–6 km in the western Podhale (<3–4 km removed), to 6.5–7.5 km in the eastern Podhale (>4–5 km removed), and even more in the eastern Tatra and Spisská Magura close to the Ružbachy Fault. These data imply a major subsidence followed by uplift of the Podhale plus Tatra block along the Ružbachy Fault and the deposition of a thick sequence of Lower Miocene sediments over the entire area (latter removed by erosion).

The Mesozoic rocks of all the structural units underlying the flysch basin underwent advanced diagenesis (maximum palaeotemperatures of 160–270°C) during an Upper Cretaceous tectonic burial event at ∼80–90 Ma. The tectonic overload was removed before the Eocene transgression (49–42 Ma).

Type
Research papers
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Mass Spectrometry Laboratory, Institute of Physics UMCS, 20-031 Lublin, Poland

References

Altaner, S.P., Hower, J., Whitney, G. & Aronson, J.L. (1984) Model for K-bentonite formation: evidence from zoned K-bentonites in the disturbed belt, Montana. Geology. 12, 412415.Google Scholar
Anczkiewicz, A.A., Zattin, M. & Srodon, J. (2005) Cenozoic uplift of the Tatras and Podhale Basin from the perspective of the apatite fission track analyses. Mineralogical Society of Poland-Special Papers. 25, 261264.Google Scholar
Birkenmajer, K. (1986) Stages of structural evolution of the Pieniny Klippen Belt, Carpathians. Studia Geologica Polonica. 88, 732.Google Scholar
Bonhomme, M.R., Thuizat, R., Pinault, Y., Clauer, N., Wendling, R. & Winkler, R. (1975) Méthode de datation potassium-argon. Appareillage et technique. Note technique de l'Institut de Géologie Université de Strasbourg. 3, 53 pp.Google Scholar
Burchart, J. (1972) Fission-track age determination of accessory apatite from the Tatra Mountains, Poland. Earth and Planetary Science Letters. 15, 418422.Google Scholar
Cebulak, S., Kçpinska, B., Marynowski, L. & Pajak, L. (2004) Wspôlczesne i przeszle warunki termiczne badanego sektora podhalanskiego systemu geotermalnego. Pp. 8087 in: Badania warunkôw termicznych podhalanskiego systemu geotermalnego przy zastosowaniu nowej metody oksyreaktywnej analizy termicznej (OTA) i metod mineralogicznyc. (Kçpinska, B., editor). Wydawnictwo IGSMiE PAN, Krakôw (in Polish).Google Scholar
Clauer, N. and Chaudhuri, S. (1995) Clays in Crustal Environments. Isotope Dating and Tracing. Springer Verlag, Berlin, Heidelberg, New York, 358 pp.Google Scholar
Clauer, N., Srodon, J., Francû J. & Sucha, V. (1997) K-Ar dating of illite fundamental particles separated from illite-smectite. Clay Minerals. 32, 181196.CrossRefGoogle Scholar
Clauer, N., Rinckenbach, T., Weber, F., Sommer, F., Chaudhuri, S. & O'Neil, J.R. (1999) Diagenetic evolution of clay minerals in oil-bearing Neogene sandstones and associated shales from Mahakam Delta Basin (Kalimantan, Indonesia). American Association of Petroleum Geologists Bulletin. 83, 6287.Google Scholar
Dudek, T. & Srodon, J. (1996) Identification of illite/ smectite by X-ray powder diffraction taking into account the lognormal distribution of crystal thickness. Geologica Carpathica Series Clays. 5, 2132.Google Scholar
Dudek, T. & Swierczewska, A. (2001) Regional variation and structural control on clay diagenesis in the Polish segment of the Outer Carpathians. PANCARDI2001, Sopron, Hungary, Abstracts: CP-7.Google Scholar
Frey, M. (1987) The reaction-isograd kaolinite + quartz = pyrophyllite + H20, Helvetic Alps, Switzerland. Schweizerisches Mineralogisches und Petrographisches Mitteilungen. 67, 111.Google Scholar
Garecka, M. (2005) Calcareous nannoplankton from the Podhale Flysch (Oligocene-Miocene, Inner Carpathians, Poland). Studia Geologica Polonica. 124, 353369.Google Scholar
Gedl, P. (2000) Biostratigraphy and paleoenvironment of the Podhale Paleogene (Inner Carpathians, Poland) in the light of palynological studies. Part I. Studia Geologica Polonica. 117, 69154 (in Polish).Google Scholar
Hoffman, J. & Hower, J. (1979) Clay mineral assemblages as low-grade metamorphic geothermometers: application to the thrust faulted disturbed belt of Montana, U.S.A. Special Publication. 26, pp. 5579, SEPM, Tulsa, Oklahoma.Google Scholar
Hower, J., Eslinger, E., Hower, M. & Perry, E. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin. 87, 725737.Google Scholar
Hunziker, J.C., Frey, M., Clauer, N., Dallmeyer, R.D., Friedrichsen, H., Flehmig, W., Hochstrasser, K., Roggwiler, P. & Schwander, H. (1986) The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contributions to Mineralogy and Petrology. 92, 157180.Google Scholar
Hurai, V., Kihle, J., Kotulovâ, J., Marko, F. & Swierczewska, A. (2002) Origin of methane in quartz crystals from the Tertiary accretionary wedge and fore-arc basin of the Western Carpathians. Applied Geochemistry. 17, 12591271.CrossRefGoogle Scholar
Hurai, V., Tokarski, A., Swierczewska, A., Kotulovâ J., Biroâ A., Sotâk, J., Hruseck, I. & Marko, F. (2004) Methane degassing and exhumation of the Tertiary accretionary complex and fore-arc basin of the Western Carpathians. Geolines. 17, 4245.Google Scholar
Jackson, M.L. (1975) Soil Chemical Analysis - Advanced Course. Published by the author, Madison, Wisconsin.Google Scholar
Janocko, J. & Jacko, S. (1998) Marginal and deep-sea deposits of Central-Carpathian Paleogene Basin, Spisskâ Magura region, Slovakia: Implication for basin history. Slovak Geological Magazine. 4, 281292.Google Scholar
Kâzmer, M., Dunkl, I., Frisch, W., Kuhlemann, J. & Ozsvart, P. (2003) The Paleogene forearc basin of the Eastern Alps and Western Carpathians: subduction erosion and basin evolution. Journal of the Geological Society, London. 160, 413428.Google Scholar
Kohut, M. & Sherlock, S.C. (2003) Laser microprobe 39Ar-40Ar analysis of pseudotachylyte and host-rocks from the Tatra Mountains, Slovakia: evidence for late Paleogene seismic/tectonic activity. Terra Nova. 15, 417424.Google Scholar
Konon, A. (1993) Mineraly mieszanopakietowe illit/ smektyt jako wskaznik paleotemperatury w tufitach fliszu podhalanskiego. Przeglqd Geologiczny. 7, 512513 (in Polish).Google Scholar
Kotulovâ, J., Biron, A. & Sotâk, J. (1998) Organic and illite-smectite diagenesis of the Central Carpathian Paleogene Basin: implications for thermal history. XVI Congress Abstracts, Carpathian-Balkan Geological Association. Vienna, p. 293.Google Scholar
Kovâc, M., Krai’, J., Mârton, E., Plasienka, D. & Uher, P. (1994) Alpine uplift history of the central western Carpathians: geochronological, paleomagnetic, sedimentary and structural data. Geologica Carpathica. 45, 8396.Google Scholar
Krai’, J. (1977) Fission track ages of apatites from some granitoid rocks in Western Carpathians. Geologick Zbornik — Geologica Carpathica. 28, 269276.Google Scholar
Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabere, A. & Meunier, A. (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals. 37, 122.Google Scholar
Lefeld, J. (1997) Tektogeneza Tatr Cykl alpejski. Guidebook of 68 Conference of the Polish Geological Society. Zakopane, pp. 1621 (in Polish).Google Scholar
Lexa, J., Bezâk, V., Elecko, M., Mello, J., Polâk, M., Potfaj, M. & Vozâr, J. (editors) (2000) Geological Map of Western Carpathians and Adjacent Areas 1:500000. Geological Survey of the Slovak Republic, Bratislava.Google Scholar
Maluski, H., Rajlich, P. & Matte, P. (1993) 39Ar-40Ar dating of the Inner Carpathian Variscan basement and Alpine mylonitic overprinting. Tectonophysics. 223, 313337.Google Scholar
Malecka, D. (1982) Mapa glôwnych jednostek geologiczny ch Podhala i ôbszarow przyleglych (1:100 000). Wydawnictwa Geologiczne, Warszawa (in Polish).Google Scholar
Marschalko, R. (1968) Faciès distributions, paleocurrents and paleotectonics of the Paleogene flysch of central West-Carpathians. Geologick Zbornik Geologica Carpathica. 19, 6994.Google Scholar
Mastella, L. (1975) Tektonika fliszu we wschodniej czgsci Podhala. Annales Societatis Geologorum Poloniae. 45, 361401 (in Polish).Google Scholar
Mystkowski, K., Srodon, J. & McCarty, D.K. (2002) Application of evolutionary programming to automatic XRD quantitative analysis of clay-bearing rocks. Abstracts with Programs, The Clay Minerals Society 39th Annual Meeting, Boulder, CO.. p. 134.Google Scholar
Nemcok, J., Bezâk, V., Janâk, M., Kahan, S., Rybka, W., Kohût, M., Lehotsk, I., Wieczorek, J., Zelman, J., Mello, J., Halouzka, R., Raczkowski, W. & Reichwalder, P. (1993) Explanations to geological map of the Tatra Mts. 1:50 000. Geologick Ustav Dionza Stura, Bratislava, 135 pp. (in Slovak).Google Scholar
Nemcok, M., Keith, J.F. & Neese, D.G. (1996) Development and hydrocarbon potential of the Central Carpathian Paleogene Basin, West Carpathians, Slovak Republic. Pp. 321–342 in. Peri-Tethys Memoir 2: Structure and Prospects of Alpine Basins and Foreland. (Ziegler, PA. & Horvath, F., editors). Memoir of the National Museum of Natural History, Bratislava, 170.Google Scholar
Olszewska, B.W. & Wieczorek, J. (1998) The Paleogene of the Podhale Basin (Polish Inner Carpathians) micropaleonthological perspective. Przeglqd Geologiczny. 46, 721728.Google Scholar
Oszczypko, N. & Oszczypko-Clowes, M. (2003) The Aquitanian marine deposits in the basement of Polish Western Carpathians and its paleogeographical and paleotectonic implications. Acta Geologica Polonica. 53, 101122.Google Scholar
Perry, E. (1974) Diagenesis and the K-Ar dating of shales and clay minerals. Geological Society of America Bulletin. 85, 827830.Google Scholar
Perry, E. & Hower, J. (1970) Burial diagenesis in Gulf Coast pelitic sediments. Clays and Clay Minerals. 18, 165177.CrossRefGoogle Scholar
Pollastro, RM. (1993) Considerations and applications of the illite/smectite geothermometer in hydrocarbon- bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals. 41, 119133.Google Scholar
Poprawa, P. & Marynowski, L. (2005) Thermal history of the Podhale Trough (northern part of the Central Carpathian Paleogene Basin) preliminary results from 1-D maturity modeling. Mineralogical Society of Poland — Special Papers. 25, 352355.Google Scholar
Radomski, A. (1958) Charakterystyka sedymentologiczna fliszu podhalanskiego. Acta Geologica Polonica. 8, 335409 (in Polish).Google Scholar
Rieke, H.H. & Chilingarian, G.V. (1974) Compaction of Argillaceous Sediments. Elsevier, Amsterdam, 424 pp.Google Scholar
Skiba, M. & Michalik, M. (2000) Origin of silicate minerals in Triassic carbonate rocks from the Krizna Unit in the Tatra Mts. Slovak Geological Magazine. 6, 253255.Google Scholar
Sotâk, J. (1998a) Sequence stratigraphy approach to the Central Carpathian Paleogene (Eastern Slovakia): eustasy and tectonics as controls of deep-sea fan deposition. Slovak Geological Magazine. 4, 185190.Google Scholar
Sotâk, J. (1998b) Central Carpathian Paleogene and its constraints: reply to Gross & Filo’ and Potfaj's comments. Slovak Geological Magazine. 4, 203211.Google Scholar
Sotâk, J.., Spisiak, J., Barâth, I., Bebej, J., Biron, A., Hamrsmid, B., Hrncarovâ, M, Hudâckovâ, N., Hurai, V., Kotulovâ, J., Kovâc, M., Marko, F., Marschalko, R., Michalik, J., Milicka, J., Misik, M., Nagymarosy, A., Pitonâk, P., Pereszlenyi, M., Plasienka, D., Prokesovâ, R., Rehâkovâ, D. & Svàbenickâ, L. (1996) Geological assessment of the Levocské Vrchy Mts. - research report. Geofond, Bratislava, 1193 pp. (in Slovak).Google Scholar
Sotâk, J., Pereszlenyi, M., Marschalko, R, Milicka, J. & Starek, G. (2001) Sedimentology and hydrocarbon habitat of the submarine-fan deposits of the Central Carpathian Paleogene Basin (NE Slovakia). Marine and Petroleum Geology. 18, 87114.CrossRefGoogle Scholar
Sperner, B., Ratschbacher, L. & Nemcok, M. (2002) Interplay between subduction retreat and lateral extrusion: Tectonics of the Western Carpathians. Tectonics. 21, 124.Google Scholar
Srodon, J. (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays and Clay Minerals. 28, 401411.Google Scholar
Srodon, J. (1981) X-ray identification of randomly interstratified illite/smectite in mixtures with discrete illite. Clay Minerals. 16, 297304.Google Scholar
Srodon, J. (1984) X-ray powder diffraction identification of illitic materials. Clays and Clay Minerals. 32, 337349.Google Scholar
Srodon, J. (1995) Reconstruction of maximum paleotemperatures at the present erosional surface of the Upper Silesia Basin based on the composition of illite/smectite in shales. Studia Geologica Polonica. 108, 922.Google Scholar
Srodon, J. (1999) Use of clay minerals in reconstructing geological processes: current advances and some perspectives. Clay Minerals. 34, 2737.Google Scholar
Srodon, J. (2004) Badania stopnia przeobrazenia termicznego mineralôw mieszanopakietowych illitsmektyt. Pp. 8087 in: Badania warunkôw termicznych podhalanskiego systemu geotermalnego przy zastosowaniu nowej metody oksyreaktywnej analizy termicznej (OTA) i metod mineralogicznych. (Kçpinska, B., editor). Wydawnictwo IGSMiE PAN, Krakôw (in Polish).Google Scholar
Srodon, J. & Clauer, N. (2001) Diagenetic history of Lower Paleozoic sediments in Pomerania (northern Poland) traced across the Teisseyre-Tornquist tectonic zone using mixed-layer illite-smectite. Clay Minerals. 36, 1527.CrossRefGoogle Scholar
Srodon, J., Drits, VA., McCarty, D.K., Hsieh, J.C.C. & Eberl, D.D. (2001) Quantitative XRD analysis of clay-rich rocks from random preparations. Clays and Clay Minerals. 49, 514528.Google Scholar
Srodon, J., Clauer, N. & Eberl, D.D. (2002) Interpretation of K-Ar dates of illitic clays from sedimentary rocks aided by modelling. American Mineralogist. 87, 15281535.CrossRefGoogle Scholar
Srodon, J., Clauer, N., Banas, M. & Wôjtowicz, A. (2006) K-Ar evidence of a Mesozoic thermal event overprinting burial diagenesis of the Carboniferous Upper Silesia Coal Basin. Clay Minerals. 41, 669690.Google Scholar
Such, P. (2000) Stadium badan przestrzeni porowej skal dla potrzeb geologii naftowej. Prace IGNiG. 104, 94 pp. (in Polish).Google Scholar
Sucha, V., Kraus, L, Gerthofferovâ, H., Petes, J. & Serekovâ, M. (1993) Smectite to illite conversion in bentonites and shales of the East Slovak Basin. Clay Minerals. 28, 243253.Google Scholar
Suggate, R.P. (1998) Relations between depth of burial, vitrinite reflectance and geothermal gradient. Journal of Petroleum Geology. 21, 532.Google Scholar
Sweeney, J. J. & Burnham, A.K. (1990) Evaluation of the simple model of vitrinite reflectance based on chemical kinetics. American Association of Petroleum Geologists Bulletin. 74, 15591570.Google Scholar
Uhlik, P., Biron, A., Sucha, V., Andrejeva-Grigorovic, A., Clauer, N. & Halâsovâ, E. (2002) Illit-smektit z vulkanoklastickych poloh zdroj informacii o historii centralnokarpatskeho paleogenneho bazena. Mineralia Slovaca. 34, 8592 (in Slovak).Google Scholar
Weaver, CE. & Wampler, J.M. (1970) K, Ar, illite burial. Geological Society of America Bulletin. 81, 34233430.Google Scholar
Westwalewicz-Mogilska, E. (1986) Nowe spojrzenie na genezç osadôw fliszu podhalanskiego. Przeglqd Geologiczny. 12, 690698 (in Polish).Google Scholar
Wieczorek, J. (1989) Model Hecho dla fliszu podhalanskiego. Przeglqd Geologiczny. 37, 419423 (in Polish).Google Scholar
Wolska, A., Szulc, J. & Koszowska, E. (2002) K/Ar dating of the Middle Triassic tuffs from the Central Carpathians and its paleotectonic context. Proceedings ESSEWECA. Bratislava, pp. 7374.Google Scholar