Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-02-07T15:50:59.424Z Has data issue: false hasContentIssue false

Effects of polypropylene glycol-treated montmorillonite/carbon black as a filler with rubber compound properties

Published online by Cambridge University Press:  05 February 2025

Zohreh Asghari Barzegar
Affiliation:
Chemistry Department, North Tehran Branch, Islamic Azad University, Tehran, Iran
Mercedeh Malekzadeh*
Affiliation:
Chemistry Department, North Tehran Branch, Islamic Azad University, Tehran, Iran
*
Corresponding author: Mercedeh Malekzadeh; Email: m_malekzadeh@iau-tnb.ac.ir

Abstract

Carbon black is commonly used as a filler in the rubber industry. However, it can cause serious damage to human health and to ecosystems. Today, reducing the use of this substance via alternative materials is receiving increased attention. Clay minerals such as montmorillonite can be substituted for carbon black as environmentally friendly fillers for rubber compounds. The uniform dispersion of montmorillonite and its compatibility with the rubber matrix are the main principles for using this material in the rubber industry. To this end, montmorillonite was surface treated with various dosages (1.0, 1.5 and 2.0 wt.%) of polypropylene glycol. The surface-treated montmorillonites were investigated using attenuated total reflection Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and X-ray diffraction analysis. The results indicated that the treatment expanded the interlayer spaces of the montmorillonite and improved surface hydrophobicity. The untreated and treated montmorillonites were used with carbon black as dual fillers in natural rubber/styrene butadiene-based compounds. The cure characteristics, thermal stability, some mechanical properties and dispersion states were evaluated. The curing study indicated a faster optimum cure time, scorch time and increased torque difference for the rubber compounds filled with surface-treated montmorillonites. Thermal analysis of the rubber compounds illustrated that the interval between the initial and final temperature of decomposition could be increased via the treatment. Surface-treated montmorillonite samples, especially the sample containing 1 wt.% polypropylene glycol, showed improved abrasion resistance, resilience and compression set values.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadi, F., Ghanbari, H., Shabani Moghaddam, F. & Naghizadeh, R. (2022) Optimized purification procedure for Iranian calcium bentonite for producing montmorillonite nanosheets. Clay Minerals, 57, 120130.CrossRefGoogle Scholar
Al-Shemmari, F.H.J., Rabah, A.A., Al-Mulla, E.A.J. & Alrahman, N.O.M.A. (2013) Preparation and characterization of natural rubber latex/modified montmorillonite clay nano-composite. Research on Chemical Intermediates, 39, 42934301.CrossRefGoogle Scholar
Alwis, G.M.C., Kottegoda, N. & Ratnayake, U.N. (2020) Facile exfoliation method for improving interfacial compatibility in montmorillonite-natural rubber nanocomposites: a novel charge inversion approach. Applied Clay Science, 191, .CrossRefGoogle Scholar
Antosik, A.K., Mozelewska, K., Musik, M., Miadlicki, P., Srenscek-Nazzal, J. & Wilpiszewska, K. (2023) The effect of neat and modified montmorillonite on thermal properties of silicone pressure-sensitive adhesives. International Journal of Adhesion and Adhesives, 130, .Google Scholar
Arabmofrad, S., Jafari, S.M., Lazzara, G., Ziaiifar, A.M., Shahiri Tabarestani, H., Bahlakeh, G. et al. (2023) Preparation and characterization of surface-modified montmorillonite by cationic surfactants for adsorption purposes. Journal of Thermal Analysis and Calorimetry, 148, 1380313814.CrossRefGoogle Scholar
Archibong, F.N., Orakwe, L.C., Ogah, O.A., Mbam, S.O., Ajah, S.A., Okechukwu, M.E. et al. (2023) Emerging progress in montmorillonite rubber/polymer nanocomposites: a review. Journal of Materials Science, 58, 23962429.CrossRefGoogle Scholar
Arroyo, M., López-Manchado, M.A. & Herrero, B. (2003) Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer, 44, 24472453.CrossRefGoogle Scholar
Baghitabar, K., Jamshidi, M. & Ghamarpoor, R. (2023) Exfoliation, hydroxylation and silanization of two-dimensional (2D) montmorillonites (MMTs) and evaluation of the effects on tire rubber properties. Polymer Testing, 129, .CrossRefGoogle Scholar
Belousov, P., Chupalenkov, N., Christidis, G.E., Zakusina, O., Zakusin, S., Zakusin, S. et al. (2021) Carboniferous bentonites from 10Th Khutor deposit (Russia): Composition,properties and features of genesis. Applied Clay Science, 215, .CrossRefGoogle Scholar
Bertuoli, P.T., Piazza, D., Scienza, L.C. & Zattera, A.J. (2014) Preparation and characterization of montmorillonite Modified with 3-aminopropyltriethoxysilane. Applied Clay Science, 87, 4651.CrossRefGoogle Scholar
Carli, L.N., Crespo, J.S. & Mauler, R.S. (2011) PHBV nanocomposites based on organomodified montmorillonite and halloysite: the effect of clay type on the morphology and thermal and mechanical properties. Composites: Part A, 42, 16011608.CrossRefGoogle Scholar
Chen, Y., Sun, K., Zhang, T., Zhou, J., Liu, Y., Zeng, M. et al. (2023) TiO2-modified montmorillonite-supported porous carbon-immobilized Pd species nanocomposite as an efficient catalyst for Sonogashira reactions. Molecules, 28, .Google Scholar
Chrissafis, K. & Bikiaris, D. (2011) Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochimica Acta, 523, 124.CrossRefGoogle Scholar
Christidis, G.E., Chryssikos, G.D., Derkowski, A., Dohrmann, R., Eberl, D.D., Joussein, E. et al. (2023) Methods for determination of the layer charge of smectites: a critical assessment of existing approaches. Clays and Clay Minerals, 71, 2553.CrossRefGoogle Scholar
Das, A., Stockelhuber, K.W., Jurk, R., Jehnichen, D. & Heinrich, G. (2011) A general approach to rubber–montmorillonite nanocomposites: intercalation of stearic acid. Applied Clay Science, 51, 117125.CrossRefGoogle Scholar
Esmaeili, E., Rounaghi, S.M. & Eckert, J. (2021) Mechanochemical synthesis of rosin-modified montmorillonite: a breakthrough approach to the next generation of OMMT/rubber nanocomposites. Nanomaterials, 11, 19741987.CrossRefGoogle Scholar
Fathurrohman, M.I., Rugmai, S., Hayeemasae, N. & Sahakaro, K. (2020) Better balance of silica-reinforced natural rubber tire tread compound properties by the use of montmorillonite with optimum surface modifier content. Rubber Chemistry and Technology, 93, 548566.Google Scholar
Gua, Y.X., Liu, J.H., Gates, W.P. & Zhou, C.H. (2020) Organo-modification of montmorillonite. Clay and Clay Minerals, 68, 601622.CrossRefGoogle Scholar
Gupta, S.D., Mukhopadhyay, R., Baranwal, K.C. & Bhowmick, A.K. (2013) Reverse Engineering of Rubber Products: Concepts, Tools, and Techniques. CRC Press, Boca Raton, FL, USA, pp.CrossRefGoogle Scholar
Jincheng, W., Youcheng, D., Kai, S., Yibo, S., Chen, P. & Yi, Z. (2013) Organoclays prepared from montmorillonites with tetramethylolphosphonium chloride in different pH conditions. Powder Technology, 247, 178187.Google Scholar
Kazemi, H., Mighri, F. & Rodrigue, D. (2022) A review of rubber biocomposites reinforced with lignocellulosic fillers. Journal of Composites Science, 6, 183214.CrossRefGoogle Scholar
Kovalchuk, I. (2023) Performance of thermal-, acid-, and mechanochemical-activated montmorillonite for environmental protection from radionuclides U(VI) and Sr(II). Eng – Advances in Engineering, 4, 21412152.CrossRefGoogle Scholar
Krol-Morkisz, K. & Pielichowska, K. (2018) Thermal decomposition of polymer nanocomposites with functionalized nanoparticles. Pp. 405435 in: Polymer Composites with Functionalized Nanoparticles. Pielichowski, K. & Majka, T.M., editors). Elsevier, Amsterdam, The Netherlands.Google Scholar
Krzaczkowska, J., Fojud, Z., Kozak, M. & Jurga, S. (2005) Spectroscopic studies of poly(ε-caprolactone)/sodium montmorillonite nanocomposites. Acta Physica Polonica A, 108, 187196.CrossRefGoogle Scholar
Lan, D.N.U., Bakar, A.A., Azahari, B., Ariff, Z.M. & Chujo, Y. (2012) Effect of interlocking between porous microparticles and elastomer on mechanical properties and deformation modes. Polymer Testing, 31, 931937.CrossRefGoogle Scholar
Liu, X., Zhou, F., Chi, R., Feng, J., Ding, Y. & Liu, Q. (2019) Preparation of modified montmorillonite and its application to rare earth adsorption. Minerals, 9, 747760.CrossRefGoogle Scholar
Madejova, J., Barlog, M., Slany, M., Bashir, S., Scholtzova, E., Tunega, D. et al. (2023) Advanced materials based on montmorillonite modified with poly(ethylenimine) and poly(2-methyl-2-oxazoline): Experimental and DFT study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 659, .CrossRefGoogle Scholar
Meng, Z., Li, J., Zou, Y., Li, N., Fu, X., Zhang, R. et al. (2022) Advanced montmorillonite modification by using corrosive microorganisms as an alternative filler to reinforce natural rubber. Applied Clay Science, 225, .CrossRefGoogle Scholar
Miedzianowska, J., Masłowski, M., Rybínski, P. & Strzelec, K. (2021) Modified nanoclays/straw fillers as functional additives of natural rubber biocomposites. Polymers, 13, 799828.CrossRefGoogle ScholarPubMed
Mohamed, R.M. (2013) Radiation induced modification of NBR and SBR montmorillonite nanocomposites. Journal of Industrial and Engineering Chemistry, 19, 8086.CrossRefGoogle Scholar
Moonchai, D., Moryadee, N. & Poosodsang, N. (2012) Comparative properties of natural rubber vulcanisates filled with defatted rice bran, clay and calcium carbonate. Maejo International Journal of Science and Technology, 6, 249258.Google Scholar
Moustafa, H., Lawandy, S.N., Rabee, M. & Zahran, M.A.H. (2020) Effect of green modification of nanoclay on the adhesion behavior of EPDM rubber to polyester fabric. International Journal of Adhesion and Adhesives, 100, .CrossRefGoogle Scholar
Olszewski, A., Lawniczak, A., Kosmela, P., Strakowski, M., Mielewczyk-Gryn, A., Hejna, A. et al. (2023) Influence of surface-modified montmorillonite clays on the properties of elastomeric thin layer nanocomposites. Materials, 16, .CrossRefGoogle ScholarPubMed
Pajtášová, M., Mičicová, Z., Ondrušová, D., Pecušová, B., Feriancová, A., Raník, L. et al. (2017) Study of properties of fillers based on natural bentonite and their effect on the rubber compounds. Procedia Engineering, 177, 470475.CrossRefGoogle Scholar
Pattamaprom, C. & Jiamjitsiripong, K. (2012) Effects of layered silicate fillers and their surface treatments in NR/BIIR blend. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 3, 381399.Google Scholar
Rath, J.P., Chaki, T.K. & Khastgir, D. (2012) Development of natural rubber-fibrous nano clay attapulgite composites: the effect of chemical treatment of filler on mechanical and dynamic mechanical properties of composites. Procedia Chemistry, 4, 131137.CrossRefGoogle Scholar
Safarik, I. & Prochazkova, J. (2024) Soil montmorillonite can exhibit peroxidase-like activity. Clay Minerals, 59, 2225.CrossRefGoogle Scholar
Sarier, N. & Onder, E. (2010) Organic modification of montmorillonite with low molecular weight polyethylene glycols and its use in polyurethane nanocomposite foams. Thermochimica Acta, 510, 113121.CrossRefGoogle Scholar
Sarma, A.D., Federico, C.E., Nzulu, F., Weydert, M., Verge, P. & Schmidt, D.F. (2021) Multipurpose processing additives for silica/rubber composites: synthesis, characterization, and application. Polymers, 13, 36083621.CrossRefGoogle Scholar
Seo, J.G., Lee, C.K., Lee, D. & Song, S.H. (2018) High-performance tires based on graphene coated with Zn-free coupling agents. Journal of Industrial and Engineering Chemistry, 66, 7885.CrossRefGoogle Scholar
Shuai, C., Yu, L., Feng, P., Zhong, Y., Zhao, Z., Chen, Z. et al. (2020) Organic montmorillonite produced an interlayer locking effect in a polymer scaffold to enhance interfacial bonding. Materials Chemistry Frontiers, 4, 23982408.CrossRefGoogle Scholar
Song, K. & Sandi, G. (2001) Characterization of montmorillonite surfaces after modification by organosilane. Clays and Clay Minerals, 49, 119125.CrossRefGoogle Scholar
Songurtekin, D., Yalcinkaya, E.E., Ag, D., Seleci, M., Demirkol, D.O. & Timur, S. (2013) Histidine modified montmorillonite: laccase immobilization and application to flow injection analysis of phenols. Applied Clay Science, 86, 6469.CrossRefGoogle Scholar
Su, H., Zhang, Y., Zhou, J. & Hou, Q. (2023) Molecular dynamics simulation of dodecyl dimethyl benzyl ammonium cation-intercalated montmorillonite. Clay Minerals, 58, 415423.CrossRefGoogle Scholar
Utrera-Barrios, S., Perera, R., León, N., HernándezSantana, M. & Martínez, N. (2021) Reinforcement of natural rubber using a novel combination of conventional and in situ generated fillers. Composites Part C, 5, .Google Scholar
Wang, L., Fu, W., Peng, W., Xiao, H., Li, S., Huang, J. et al. (2019) Enhancing mechanical and thermal properties of polyurethane rubber reinforced with polyethylene glycol-g-graphene oxide. Advances in Polymer Technology, 2019, .Google Scholar
Wójcik-Bania, M. & Matusik, J. (2021) The effect of surfactant-modified montmorillonite on the cross-linking efficiency of polysiloxanes. Materials, 14, 26232638.CrossRefGoogle ScholarPubMed
Xi, Y., Frost, R.L. & He, H. (2007) Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methyl ammonium bromides. Journal of Colloid and Interface Science, 305, 150158.CrossRefGoogle ScholarPubMed
Yotsuji, K., Tachi, Y., Sakuma, H. & Kawamura, K. (2021) Effect of interlayer cations on montmorillonite swelling: comparison between molecular dynamic simulations and experiments. Applied Clay Science, 204, .CrossRefGoogle Scholar
Yu, W.H., Liu, J.H., Wang, M., Li, N., Zhang, J.R., Huang, T.H. et al. (2021) Dispersion and swellability of ternary surfactant co-modified montmorillonites. Clays and Clay Minerals, 69, 759771.CrossRefGoogle Scholar
Zhang, H., Xing, W., Li, H., Xie, Z., Huang, G. & Wu, J. (2019) Fundamental researches on graphene/rubber nanocomposites. Advanced Industrial and Engineering Polymer Research, 2, 3241.CrossRefGoogle Scholar
Zhang, Q., Liu, Q., Zhang, Y., Cheng, H. & Lu, Y. (2012) Silane-grafted silica-covered kaolinite as filler of styrene butadiene rubber. Applied Clay Science, 65–66, 134138.CrossRefGoogle Scholar
Zhou, L., Chen, H., Jiang, X., Lu, F., Zhou, Y., Yin, W. et al. (2009) Modification of montmorillonite surfaces using a novel class of cationic Gemini surfactants. Journal of Colloid and Interface Science, 332, 1621.CrossRefGoogle ScholarPubMed
Zhou, S.Q., Niu, Y.Q., Liu, J.H., Chen, X.X., Li, C.S., Gates, W.P. & Zhou, C.H. (2022) Functional montmorillonite/polymer coatings. Clays and Clay Minerals, 70, 209232.CrossRefGoogle Scholar