Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T08:40:43.834Z Has data issue: false hasContentIssue false

Etude de la repartition des cations interfoliaires dans les phlogopites alterees-(Na, Ca) et (Na, K)

Published online by Cambridge University Press:  09 July 2018

J.-P. Gaultier*
Affiliation:
Station de Science du Sol, INRA, Route de St Cyr, 78000 Versailles, France

Resume

Les propriétés d'hydratation de phlogopites altérées-(Na,Ca) et -(Na,K) sont étudiées á l'aide des techniques de diffraction des rayons X. La comparaison du diagramme calculé d'après un modèle mathématique au diagramme expérimental permet de mettre en évidence un phénomène de démixtion des cations dans les espaces interfoliaires. Cette ségrégation est plus importante dans le cas des échantillons -(Na,K) que dans celui des échantillons -(Na,Ca). Une analyse quantitative du phénomène montre l'existence d'une ou de deux phases cristallines distinctes selon les teneurs en calcium ou en potassium. Les proportions relatives de ces deux phases ainsi que la composition de leurs espaces interfoliaires ont été déterminées. Un mécanisme élémentaire est proposé; il explique la présence et la composition de ces différentes phases.

Abstract

Abstract

Hydration properties of bi-ionic, weathered (Na,Ca)- and (Na,K)-phlogopites have been studied by X-ray diffraction techniques. Comparison of the experimental patterns with those calculated from a mathematical model gave evidence of demixing of the cations in the interlamellar space. This segregation was more important for the (Na,K)- than for the (Na,Ca)-saturated samples. Quantitative analysis of the phenomenon demonstrated the existence of one or two distinct phases depending on the proportions of calcium or potassium present. The relative proportions of these two phases and the composition of their interlamellar spaces were determined. An elementary mechanism is proposed which explains the presence and composition of these different phases.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrer, R. & Brummer, K. (1963) Relation between partial ion exchange and interlamellar sorption in alkylamonium montmorillonites. Trans. Farad. Soc. 59, 959968.Google Scholar
Baron, P., Shainberg, L. & Michaeli, I. (1970) Electrophoretic mobility of montmorillonite particles saturated with Na-Ca ions. J. Colloid Interf Sci. 33, 471472.Google Scholar
Chaussidon, J. (1963) Evolution des caractéristiques chimiques et cristallographiques de montmorillonites biioniques K-Ca au cours d'alternances répétées d'humectation dessiccation. Proc. Int. Clay Conf. Stockolm 1, 195201.Google Scholar
De la Calle, C. (1977) Structure des vermiculites. Facteurs conditionnant les mouvements des feuillets. Thése de doctorat d'état, Université Pierre et Marie Curie, Paris.Google Scholar
Fink, D.H., Nakayama, F.S. & McNeal, B.L. (1971) Demixing of exchangeable cations in free swelling bentonite clay. Soil Sci. Soc. Am. Proc. 35, 552555.Google Scholar
Gaultier, J.P. & Mamy, J. (1981) Demixing phenomenon in low water content biionic K-Na montmorillonites. Proc. Int. Clay Conf. Bologne et Pavia, 451457.Google Scholar
Le Dred, R., Saehr, D. & Baron, J. (1979) Préparation de vermiculites interstratifiées (Na-Rb) et (Na-Cs) de type 1/I par échange de cations. C.R. Acad. Sci. Paris D 289, 4750.Google Scholar
Le Renard, J. & Mamy, J. (1971) Etude de la structure des phases hydratées des phlogopites altérées par des projections de Fourier monodimensionnelles. Bull. Gr. Franc. Argiles 23, 119127.Google Scholar
Levy, R. & Francis, C.W. (1975) Demixing of sodium and calcium ions in montmorillonite crystallites. Clays Clay Miner. 23, 475476.Google Scholar
McBride, M.B. & Mortland, M.M. (1973) Segregation and exchange properties of alkylamonium ions in smectite and vermiculite. Clays Clay Miner. 21, 323329.Google Scholar
McNeal, B.L. (1970) Prediction of interlayer swelling of clays in mixed salt solutions. Soil Sci. Soc. Am. Proc. 34, 206210.Google Scholar
Mamy, J. (1970) Extraction of interlayer K from phlogopite. Specific effects of cation role of Na and H concentrations in extraction solutions. Clays Clay Miner. 18, 157163.Google Scholar
Mamy, J. & Gaultier, J.P. (1974) Etude par diffraction X de la désorption de l'eau fixée dans les espaces interfeuillets des phlogopites altrérées. Bull. Gr. Franc. Arg. 26, 165171.Google Scholar
Mathieson, A. McL. & Walker, G.F. (1954) Crystal structure of magnesium vermiculite. Am. Miner. 39, 231255.Google Scholar
Mering, J. & Glaeser, R. (1954) Sur le rôle de la valence des cations échangeables dans la montmorillonite. Bull. Soc. Franc. Miner. Crist. 77, 519530.Google Scholar
Scott, A.D. (1968) Effect of particle size on interlayer potassium exchange in micas. Trans. 9th Int. Cong. Sci. Sol. Adelaiïde, 649660.Google Scholar
shainberg, I. & Otoh, H. (1968) Size and shape of montmorillonite particles saturated with Na-Ca ions. Isr. J. Chem. 6, 251259.Google Scholar
Wright, A.C. (1975) Closed form equations for X-ray diffraction by interstratified clay systems, I Randomly occurring interlamellar species. Clays Clay Miner. 23, 278288.Google Scholar