Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T08:15:57.003Z Has data issue: false hasContentIssue false

Fe-rich smectites from Gafsa (Tunisia): characterization and pillaring behaviour

Published online by Cambridge University Press:  09 July 2018

S. Letaïef
Affiliation:
L.P.C.M. Faculté des Sciences de Bizerte, Zarzouna Bizerte, Tunisia Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
B. Casal
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
N. Kbir-ariguib
Affiliation:
Institut Nationale de la Recherche Scientifique et Technique, Borj-Cédria, 2050 Hammam-Lif, Tunisia
M. Trabelsi–Ayadi
Affiliation:
L.P.C.M. Faculté des Sciences de Bizerte, Zarzouna Bizerte, Tunisia
E. Ruiz-hitzky*
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain

Abstract

Three raw samples of Fe-rich smectites from Gafsa (Jebels Shemsi and Hammadi, Tunisia) have been characterized by different techniques which indicate that they contain (15 – 20%) illite, probably interstratified and to a lesser extent they also contain kaolinite, calcite, quartz and Fe oxides. These samples present a relatively high Fe content (∼9%) in the <2 μm fraction. From EPR and Mössbauer spectroscopy it is deduced that Fe is mainly present as Fe(III) in the octahedral environment of smectites and also in Fe-oxyhydroxides associated with the clays. Aluminium-pillared clays have been prepared from the Na+-purified samples, and their thermal stability and acidity have been studied.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagshaw, S.A. & Cooney, R.P. (1993) FTIR surface site analysis of pillared clays using pyridine probe species. Chemical Materials, 5, 11011109.Google Scholar
Bailey, S.W. (1980) Structures of layer silicates. Pp. 1123 in. Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogical Society, London.Google Scholar
Bergaya, F., Hassoun, N., Gatineau, L. & Barrault, J. (1991) Mixed Al-Fe Pillared laponites: Preparations, Characterisation and Catalytic Proprieties in Syngas Conversion. P. 329336 in: Preparation of Catalysts V (Poncelet, G., Jacobs, P.A., Grange, P. & Delmon, B., editors). Elsevier Science Publishers, B.V., Amsterdam.Google Scholar
Bergaya, F. & Vayer, M. (1997) CEC measurement by adsorption of a copper ethylenediamine complex. Applied Clay Science, 12, 275280.Google Scholar
Bodoardo, S., Figueras, F. & Garrone, E. (1994) IR study of Brönsted acidity of Al-pillared montmorillonite. Journal of Catalysis, 147, 223230.CrossRefGoogle Scholar
Brigatti, M.F. (1983) Relationships between composition and structure in Fe-rich smectites. Clay Minerals, 18, 177186.CrossRefGoogle Scholar
Brindley, G.W. & Sempels, R.E. (1977) Preparation and properties of some hydroxy-aluminium beidellites. Clay Minerals, 12, 229237 Google Scholar
Brown, G. & Brindley, G.W. (1980) X-ray procedures for clay minerals identification. Pp. 305360 in. Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogical Society, London.Google Scholar
Brunauer, S., Emmett, P.H. & Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309319.Google Scholar
Caillère, S., Henin, S. & Rauturea u, M. (1982) Minéralogie des Argiles I: Structure et Propriétés Physico-Chimiques. Masson, Paris.Google Scholar
Dixon, J.B. & Weed, S.B. (1977) Montmorillonite and other smectite minerals. P. 299 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors). Soil Science Society of America, Inc., Madison, Wisconsin, USA.Google Scholar
Farmer, V.C., editor (1974) The Infrared Spectra of Minerals. Monograph 4, Mineralogical Society, London.Google Scholar
Fripiat, J.J., Chaussidon, J. & Jelly, A. (1970) Chimie Physique des Phénomènes de Surfaces et Application aux Oxydes et aux Silicates. Masson, Paris Google Scholar
Giles, C.H., McEvan, T.H., Nakhma, S.N. & Smith, D. (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurement of specific surface area of solids. Journal of the Chemical Society,3973–3993.Google Scholar
Goodman, B.A., Russell, J.D. & Fraser, A.R. (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite. Clays and Clay Minerals, 24, 5359.Google Scholar
Gregg, S.J. & Sing, K.S.W. (1982) The Physical Adsorption of Gases by Mesoporous Solids: The IV type isotherm. Pp. 111190 in: Mesoporous Solids, 2nd edition. Academic Press, London.Google Scholar
Jacobs, P., Poncelet, G. & Schutz, A. (1981) French Patent Appl. no. 8116387.Google Scholar
Jacobs, P., Poncelet, G. & Schutz, A. (1983) European Patent no. 73, 718.Google Scholar
Johansson, G., Lundgren, G., Sillen, L.G. & Soderquist, R. (1960) On the crystal structure of a basic aluminium sulfate and the correspondi ng selenate. Acta Chemica Scandinavia, 14, 769771.Google Scholar
Lahav, N., Shani, U. & Shabtai, J. (1978) Cross linked smectites. Synthesis and properties of hydroxy aluminum montmor illonit e. Clays and Clay Minerals, 26, 107115.Google Scholar
Lenarda, M., Ganzerla, R., Storaro, L., Enzo, S. & Zanoni, R. (1994) Bifunctional catalysts from pillared clays: vapour phase conversion of propene to acetone catalysed by iron and ruthenium containing aluminium pillared bentonites. Journal of Molecular Catalysis, 92, 201215.CrossRefGoogle Scholar
Letaïef, S. (1998) Caractérisation Physico-Chimique et Etude Rhéologique d'Argiles du Bassin de Gafsa. Mémoire de Diplome d’Etude Approfondie. Faculté des Sciences de Bizerte, Tunisie.Google Scholar
Mauguin, C. (1928) Etude des micas au moyen des rayons X.. Bulletin de Societé Francaise de Mineralogie, 51, 285332.Google Scholar
Mehra, O.P. & Jackson, M.L (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317327.CrossRefGoogle Scholar
Parry, E.P. (1963) An infrared study of pyridine adsorbed on acidic solids. Characterisation of surface acidity. Journal of Catalysis, 2, 371379.Google Scholar
Pinnavaia, T.J. (1986) Pillared clays: synthesis and structural features. Pp. 151164 in: Chemical Reactions in Organic and Inorganic Constrained Systems (Setton, R., editor). Reidel Publishing Co., Dordrecht, The Netherlands.Google Scholar
Pinnavaia, T.J., Ming-Shin, Tzou, Landau, S.D.L. & Raythatha, R.H. (1984) On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminium. Journal of Molecular Catalysis, 27, 195212.Google Scholar
Plee, D., Gatineau, L. & Fripiat, J.J. (1987) Pillaring process of smectite with and without tetrahedral substitution. Clays and Clay Minerals, 35, 8188.Google Scholar
Poncelet, G. & Schutz, A. (1986) Pillared montmorillonite and beidellite. Acidity and catalytic properties. Pp. 165178 in: Chemical Reactions in Organic and Inorganic Constrained Systems (Setton, R., editor). Reidel Publishing Co., Dordrecht, The Netherlands.Google Scholar
Reynolds, J.C. & Hower, J. (1970) The nature of interlayering in mixed-layer illite-montmorillonite. Clays and Clay Minerals, 18, 2536.Google Scholar
Rightor, E.g. Tzou, M.S. & Pinnavaia, T.J. (1991) Iron oxide pillared clay with large gallery height: synthesis and properties as a Fisher-Tropsch catalyst. Journal of Catalysis, 130, 2940.Google Scholar
Rytwo, G., Serban, C., Nir, S. & Margulies, L. (1991) Use of methylene blue and crystal violet for determination of exchangeable cations in montmorillonite. Clays and Clay Minerals, 39, 551555.Google Scholar
Srasra, E., Kbir-Ariguib, N., Ayadi, F., Bergaya, F. & Van Damme, H. (1988) Mineralogical identification of a bentonite clay deposit located near Gabes (Tunisia). Journal de Societé Chimie de Tunisie, II, 7, 3745.Google Scholar
Theng, B.K.G. (1974) Organic reactions catalysed by clay minerals. Pp. 261291 in: The Chemistry of Clay-Organic Reactions. Adam Hilger Ld., London.Google Scholar
Van Olphen, H. (1976) An Introduction to Clay Colloid Chemistry, 2nd edition. John Wiley & Sons, New York.Google Scholar
Weaver, C.E., Wampler, J.M. & Pecuil, T.E. (1967) Mössbauer analysis in iron clay minerals. Science, 156, 504508.CrossRefGoogle ScholarPubMed