Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T09:28:46.723Z Has data issue: false hasContentIssue false

Functional nanostructures of montmorillonite with conducting polyaniline

Published online by Cambridge University Press:  02 January 2018

Jonáš Tokarský*
Affiliation:
Nanotechnology Centre, VŠB-TU Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic IT4Innovations Centre of Excellence, VŠB-TU Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
Pavlína Peikertová
Affiliation:
Nanotechnology Centre, VŠB-TU Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic IT4Innovations Centre of Excellence, VŠB-TU Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
Lenka Kulhánková
Affiliation:
Faculty of Metallurgy and Materials Engineering, VŠB-TU Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
Kateřina Mamulová Kutláková
Affiliation:
Nanotechnology Centre, VŠB-TU Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
Lucie Neuwirthová
Affiliation:
Nanotechnology Centre, VŠB-TU Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
Vlastimil Matějka
Affiliation:
Nanotechnology Centre, VŠB-TU Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
Vítězslav Stýskala
Affiliation:
Faculty of Electrical Engineering and Computer Science, VŠB-TU Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
Pavla Čapková
Affiliation:
Faculty of Science, J.E. Purkyně University, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present work describes the effect of montmorillonite (MMT) particles on the alignment of conducting polyaniline (PANI) chains in a PANI/MMT composite. The composite was prepared both as a powder, pressed into pellets, and as thin films deposited on glass surfaces. For comparison, pure PANI was also prepared in these two forms. A combination of X-ray powder diffraction analysis and molecular modelling confirmed the successful intercalation of the PANI into theMMT, while Raman spectroscopy confirmed the presence of the conducting form of PANI (i.e. the emeraldine salt) in all samples. Scanning electron microscopy, transmission electron microscopy and atomic force microscopy were used to study the morphologies of all samples. Conductivity measurements showed that the presence of the MMT particles in the PANI/MMT composites contributes to a significant increase in the electrical conductivity in comparison with the pure PANI samples. Moreover, in the pressed pellets the presence of theMMT particles led to an extremely high electrical anisotropy. TheUV-VIS spectroscopy results showed that the PANI/MMT thin film exhibited a selective transmittance in the range 450–650 nm; therefore, the PANI/MMT thin film is not only conductive, but also suitable for use in various optical applications.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2015 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

References

Adams, P.N., Laughlin, P.J. & Monkman, A.P. (1996) Synthesis of high molecular weight polyaniline at low temperatures. Synthetic Metals, 76, 157160.10.1016/0379-6779(95)03442-MCrossRefGoogle Scholar
Ayad, M.M., Salahuddin, N.A., Algaysh, M.O. & Issa, R.M. (2010) Phosphoric acid and pH sensors based on polyaniline films. Current Applied Physics, 10, 235240.10.1016/j.cap.2009.05.030CrossRefGoogle Scholar
Bhadra, S., Khastgir, D., Singha, N.K. & Lee, J.H. (2009) Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science, 34, 783810.10.1016/j.progpolymsci.2009.04.003Google Scholar
Cao, Y., Smith, P. & Heeger, A.J. (1993) Counter-ion induced processibility of conducting polyaniline. Synthetic Metals, 57, 35143519.10.1016/0379-6779(93)90468-CGoogle Scholar
Cho, M.S., Choi, H.J. & Ahn, W.S. (2004) Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels. Langmuir, 20, 202207.10.1021/la035051zGoogle Scholar
Epstein, A.J., Ginder, J.M., Zuo, F., Bigelow, R., Woo, H.S., Tanner, D.B., Richter, A.F., Huan, W.S. & MacDiarmid, A.G. (1987) Insulator-to-metal transition in polyaniline. Synthetic Metals, 18, 303309.10.1016/0379-6779(87)90896-4Google Scholar
Frost, L.R. & Rintoul, L. (1996) Lattice vibrations of montmorillonite: an FT Raman and X-ray diffraction study. Applied Clay Science, 11, 171183.10.1016/S0169-1317(96)00017-8Google Scholar
Gregory, R.V., Kimbrell, W.C. & Kuhn, H.H. (1989) Conductive textiles. Synthetic Metals, 28, 823835.10.1016/0379-6779(89)90610-3Google Scholar
Janata, J. & Josowitz, M. (2009) Organic semiconductors in potentiometric gas sensors. Journal of Solid State Electrochemistry, 13, 4149.10.1007/s10008-008-0597-0Google Scholar
Karg, S., Scott, J.C., Salem, J.R. & Angelopoulos, M. (1996) Increased brightness and lifetime of polymer light-emitting diodes with polyaniline anodes. Synthetic Metals, 80, 111117.10.1016/S0379-6779(96)03690-9Google Scholar
Kulhánková, L.,Tokarský, J.,Peikertová, P., Mamulová Kutláková, K., Ivánek , L. & Čapková, P. (2012) Montmorillonite intercalated by conducting polyani-lines. Journal of Physics and Chemistry of Solids, 73, 15301533.10.1016/j.jpcs.2011.11.043Google Scholar
Kulhánková, L., Tokarský, J., Peikertová, P., Ivánek, L., Mamulová Kutláková, K. & Čapková, P. (2014) Conductivity of polyaniline/montmorillonite nano-composites prepared under various conditions. Materials Technology — Advanced Performance Materials, 29, 301306.10.1179/1753555714Y.0000000161Google Scholar
Laslau, C., Ingham, B., Zujovic, Z.D., Čapková, P., Stejskal, J., Trchová, M. & Travas-Sejdic, J. (2012) Synchrotron X-ray scattering reveals early-stage crystallinity during the self-assembly of polyaniline nanotubes with rectangular cross-sections. Synthetic Metals, 161, 27392742.10.1016/j.synthmet.2011.10.012Google Scholar
Lu, J. & Zhao, X.P. (2002) Electrorheological properties of a polyaniline—montmorillonite clay nanocomposite suspension. Journal of Materials Chemistry, 12, 26032605.10.1039/B203921DGoogle Scholar
MacDiarmid, A.G. (2002) Synthetic metals: a novel role for organic polymers. Synthetic Metals, 125, 1122.10.1016/S0379-6779(01)00508-2CrossRefGoogle Scholar
Méring, J. & Oberlin, A. (1967) Electron-optical study of smectites. Clays and Clay Minerals, 27, 325.10.1346/CCMN.1967.0150102Google Scholar
do Nascimento, G.M., Constantino, V.R.L. & Temperini, M.L.A. (2002) Spectroscopic characterization of a new type of conducting polymer-clay composite. Macromolecules, 35, 75357537.10.1021/ma025571lGoogle Scholar
do Nascimento, G.M., Constantino, V.R.L., Landers, R. & Temperini, M.L.A. (2004) Aniline polymerization into montmorillonite clay: a spectroscopic investigation of the intercalated conducting polymer. Macromolecules, 37, 93739385.10.1021/ma049054+Google Scholar
do Nascimento, G.M., Constantino, V.R.L., Landers, R. & Temperini, M.L.A. (2006) Spectroscopic characterization of polyaniline formed in the presence of montmorillonite clay. Polymer, 47, 61316139.10.1016/j.polymer.2006.06.036Google Scholar
do Nascimento, G.M., Silva, C.H.B., Izumi, C.M.S. & Temperini, M.L.A. (2008) The role of cross-linking structures to the formation of one-dimensional nano-organized polyaniline and their Raman fingerprint. Spectrochimica Acta Part A, 71, 869875.10.1016/j.saa.2008.02.009Google Scholar
Ogawa, M. & Kuroda, K. (1995) Photofunctions of intercalation compounds. Chemical Reviews, 95, 399438.10.1021/cr00034a005Google Scholar
Prokeš, I., Varga, M., Krivka, I., Rudajevová, A. & Stejskal, J. (2011) The influence of compression pressure on transport properties of polyaniline. Journal of Materials Chemistry, 21, 50385045.10.1039/c0jm03087bGoogle Scholar
Rappé, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A. & Skiff, W.M. (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114, 1002410035.10.1021/ja00051a040CrossRefGoogle Scholar
Sapurina, I. & Stejskal, J. (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 12951325.10.1002/pi.2476Google Scholar
da Silva, J.E.P., de Tiorresi, S.I.C., de Faria, D.L.A. & Temperini, M.L.A. (1999) Raman characterization of polyaniline induced conformational changes. Synthetic Metals, 101, 834835.10.1016/S0379-6779(98)01300-9Google Scholar
Stejskal, J., Špírková, M., Quadrat, O. & Kratochvíl, P. (1997) Electrically anisotropic materials: polyaniline particles organized in a polyurethane network. Polymer International, 44, 283287.10.1002/(SICI)1097-0126(199711)44:3<283::AID-PI878>3.0.CO;2-93.0.CO;2-9>CrossRefGoogle Scholar
Stejskal, J. (2002) Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure and Applied Chemistry, 74, 857867.10.1351/pac200274050857Google Scholar
Stejskal, J. & Sapurina, I. (2005) Polyaniline, thin films and colloidal dispersions (IUPAC Technical Report). Pure and Applied Chemistry, 77, 815826.10.1351/pac200577050815CrossRefGoogle Scholar
Stejskal, J., Sapurina, I. & Trchová, M. (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 14201481.10.1016/j.progpolymsci.2010.07.006CrossRefGoogle Scholar
Sedenkova, I., Trchová, M. & Stejskal, J. (2008) Thermal degradation of polyaniline films prepared in solutions of strong and weak acids in water - FTIR and Raman spectroscopic studies. Polymer Degradation and Stability, 93, 21472157.10.1016/j.polymdegradstab.2008.08.007Google Scholar
Tokarský, J., Stýskala, V., Kulhánková, L., Mamulová Kutláková, K., Neuwirthová L., Matejka Y & Čapková P. (2013) High electrical anisotropy in hydrochloric acid doped polyaniline/phyllosilicate nanocomposites; effect of phyllosilicate matrix, synthesis pathway and pressure. Applied Clay Science, 80-81, 126132.10.1016/j.clay.2013.06.029Google Scholar
Tokarský, J., Maixner, M., Peikertová, P., Kulhánková, L. & Burda, J.V. (2014) The IR and Raman spectra of polyaniline adsorbed on the glass surface; comparison of experimental, empirical force field, and quantum chemical results. European Polymer Journal, 57, 4757.10.1016/j.eurpolymj.2014.04.023Google Scholar
Tsipurski, S.I. & Drits, V.A. (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Minerals, 19, 177193.10.1180/claymin.1984.019.2.05Google Scholar
Yeh, J.M., Liou, S.J., Lai, C.Y. & Wu, P.C. (2001) Enhancement of corrosion protection effect in polyaniline via the formation of polyaniline—clay nanocomposite materials. Chemistry of Materials, 13, 11311136.10.1021/cm000938rGoogle Scholar
Zaarei, D., Sarabi, A.A., Sharif, F. & Kassiriha, S.M. (2008) Structure, properties and corrosion resistivity of polymeric nanocomposite coatings based on layered silicates. Journal of Coating Technology and Research, 5, 241249.10.1007/s11998-007-9065-5CrossRefGoogle Scholar
Zujovic, Z.D., Laslau, C., Bowmaker, G.A., Kilmartin, P.A., Webber, A.L., Brown, S.P. & Travas-Sejdic, J. (2010) Role of aniline oligomeric nanosheets in the formation of polyaniline nanotubes. Macromolecules, 43, 662670.10.1021/ma902109rGoogle Scholar