Article contents
Functional nanostructures of montmorillonite with conducting polyaniline
Published online by Cambridge University Press: 02 January 2018
Abstract
The present work describes the effect of montmorillonite (MMT) particles on the alignment of conducting polyaniline (PANI) chains in a PANI/MMT composite. The composite was prepared both as a powder, pressed into pellets, and as thin films deposited on glass surfaces. For comparison, pure PANI was also prepared in these two forms. A combination of X-ray powder diffraction analysis and molecular modelling confirmed the successful intercalation of the PANI into theMMT, while Raman spectroscopy confirmed the presence of the conducting form of PANI (i.e. the emeraldine salt) in all samples. Scanning electron microscopy, transmission electron microscopy and atomic force microscopy were used to study the morphologies of all samples. Conductivity measurements showed that the presence of the MMT particles in the PANI/MMT composites contributes to a significant increase in the electrical conductivity in comparison with the pure PANI samples. Moreover, in the pressed pellets the presence of theMMT particles led to an extremely high electrical anisotropy. TheUV-VIS spectroscopy results showed that the PANI/MMT thin film exhibited a selective transmittance in the range 450–650 nm; therefore, the PANI/MMT thin film is not only conductive, but also suitable for use in various optical applications.
- Type
- Research Article
- Information
- Creative Commons
- Copyright © The Mineralogical Society of Great Britain and Ireland 2015 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- Copyright © The Mineralogical Society of Great Britain and Ireland 2015
References
- 6
- Cited by