Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T13:29:16.502Z Has data issue: false hasContentIssue false

Glauconitization processes in the northwestern Mediterranean (Gulf of Lions)

Published online by Cambridge University Press:  09 July 2018

P. Giresse
Affiliation:
Laboratoire d'Étude des Géo-Environnements Marins, Université de Perpignan, 52, Av. Paul Alduy, 66860, PerpignanFrance
A. Wiewióra*
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55, 00-818, WarsawPoland
D. Grabska
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55, 00-818, WarsawPoland

Abstract

Two sedimentary profiles, at 18 km and at 125 km from the Rhône River mouth were selected to study the steps of glauconitization inside green (glaucony) grains, in a temperate marine environment. The proximal site is characterized by a greater content of alpine minerals (chlorite, illite) than the distal one. In the proximal site, pellets at a younger level demonstrate a largely inherited mineral composition. In the older level, representing the most advanced stage of glauconitization, there is a mixed-layer glauconite-nontronite (G-N) phase with 20% glauconite-80% nontronite in dark green grains. In the distal site, more evolved glaucony has up to 92% glauconite in the G-N. In spite of this difference, the glauconitization process developed similarly in the two sites. The relatively low Fe content in the mud-matrix does not reflect the concentration of this element inside the grains. During diagenesis, most of the inherited minerals disappear, making way for neoformed mixed-layer glauconite-nontronite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aloisi, J.C., Millot, C., Monaco, A. & Pauc, H. (1979) Dynamique des suspensions et mécanismes sédimentogénétiques sur le plateau continental du Golfe du Lion. Comptes Rendu de l’Academie des Sciences, Paris, 289, 879–882 Google Scholar
Amouric, M., Parron, C., Casalini, L. & Giresse, P. (1995) A (1:1) 7-AÅ Fe phase and its transformation in Recent sediments: An HRTEM and AEM study. Clays and Clay Minerals, 43, 446–454 Google Scholar
Ausseil-Badie, J. (1978) Contribution à l’étude paléoé- cologique des foraminifères du Quaternaire terminal sur le plateau continental languedocien.Doctoral thesis, Université Perpignan, France.Google Scholar
Brigatti, M.F. (1985) Relationships between composition and structure in Fe-rich smectites. Clay Minerals, 18, 177–186 Google Scholar
Chamley, H. (1971) Recherches sur la sédimentation argileu se en Méditerra né e. Doctora l thesis, Université Aix-Marseille, France.Google Scholar
Courp, T. & Monaco, A. (1990) Sediment dispersal and accumulation on the continental margin of the Gulf of Lions: sedimentary budget. Continental Shelf Research 10, 1063–1087 Google Scholar
Gates, W.P., Slade, P.G., Manceau, A. & Lanson, B. (2002) Site occupancies by iron in nontronites. Clays and Clay Minerals, 50, 223–239 Google Scholar
Gensous, B., Tesson, M. & Arnold, M. (1993) Analyse en stratigraphie séquentielle des dépoˆts pléistocènes de la plateforme orientale du Rhoˆne: confrontation de l’analyse sismique et des données de terrain. Comptes Rendu de l’Academie des Sciences, 317, II, 803810, Paris.Google Scholar
Giresse, P. & Wiewióra, A. (2001) Stratigraphic condensed deposition and diagenetic evolution of green clay minerals in deep water sediments on the Ivory Coast-Ghana Ridge. Marine Geology, 179, 51–70 Google Scholar
Giresse, P., Wiewióra, A. & Lacka, B. (1988) Mineral phases and processes within green peloids from two recent deposits near the Congo River mouth. Clay Minerals, 23, 447–458 Google Scholar
Got, H. & Aloisi, J.C. (1990) The Holocene sedimentation on the Gulf of Lions margin; a quantitative approach. Continenta l Shelf Research, 9– 11, 841–855 Google Scholar
Jackson, M.L. (1969) Soil Chemistry Analysis. Advanced Course(2nd edition). Jackson, M.L., Madison, Wisconsin, USA.Google Scholar
Marin, B. & Giresse, P. (2001) Particulate manganese and iron in recent sediments of the Gulf of Lions continental margin (north-western Mediterranean Sea): deposition and diagenetic process. Marine Geology, 172, 147–165 Google Scholar
Millot, C.A. (1990) The Gulf of Lions’ hydrodynamic. Continental Shelf Research, 9–11, 885–894 Google Scholar
Monaco, A. & Mear, Y. (1984) Sedimentary sequences on the north-west Mediterranean margin during the late Quaternary: a dynamic interpretation. Pp. 115125 in: Fine-grained Sediments: Deep Water Processes and Facies Stow, (D.A.V. & Piper, D.J.W., editors). Blackwell Science Publishers, Oxford, UK.Google Scholar
Odin, G.S. (1988) Glaucony facies from the Gulf of Guinea. Pp. 225 – 248 in: Green marine clays. Oolithic Ironstones Facies, Glaucony facies and Celadonite-bearing facies. A Comparative Study(G.S . Od in, e d i t o r ) . De v e l o pme n t s i n Sedimentology, 45, Elsevier, Amsterdam.Google Scholar
Radakovitch, O. (1995) Etude du transport et du dépôt du matèriel particulaire par le 210Pb et le 210Po. Application aux marges continentales du Golfe de Gascogne (NE Atlantique) et du Golfe du Lion (NW Mé dit er ran é e). Doctoral thesis, Université Perpignan, France.Google Scholar
Reynolds, R.C., Jr. (1985) Newmod, a computer program for the calculation of one-dimensional diffraction patterns of mixed-layerd clays. Reynolds, R.C., Jr., 8 Brook Rd., Hanover, New Hampshire, USA.Google Scholar
Robert, C. & Odin, G.S. (1975) Niveaux glauconieux dans les sédiments récents du seuil nord-égéen. Bulletin de Groupe Française des Argiles, XXVII, 1–11 Google Scholar
Weiss, Z. & Ďurovič, S. (1983) Chlorite polytpism. II. Classification and X-ray identification of trioctahedral polytypes. Acta Crystallographica, B39, 552–557 Google Scholar
Wiewióra, A. (1996) Crystallochemical and structural classification of layer silicates and sepiolite (review). International Journal of the Society of Materials Engineering for Resources, 4, 56–71 Google Scholar
Wiewióra, A., Lacka, B. & Giresse, P. (1996) Characterization and origin of 1:1 phyllosilicates within peloids of the Recent, Holocene and Miocene deposits of the Congo Basin. Clays and Clay Minerals, 44, 597–598 Google Scholar
Wiewióra, A., Giresse, P., Jaunet, A.M., Wilamowski, A. & Elsass, F. (1999) Crystal chemistry of layer silicates of the Miocene green grain (Congo Basin) from Transmission Electron Microscopy (TEM) and Analytical Electron Microscopy (AEM) observations. Clays and Clay Minerals, 47, 582–590 CrossRefGoogle Scholar
Wiewióra, A., Giresse, P., Petit, S. & Wilamowski, A. (2001) A deep-water glauconitization process on the Ivory Coast-Ghana marginal Ridge (ODP Site 959); determination of Fe3+-rich montmorillonite in green grains. Clays and Clay Minerals, 49, 540–558 CrossRefGoogle Scholar
Zuo, Z., Eisma, D. & Berger, G.W. (1991) Determination of sediment accumulated, and mixing rates in the Gulf of Lions, Mediterranean Sea. Oceanologica Acta, 14, 253–262 Google Scholar