Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T08:03:48.807Z Has data issue: false hasContentIssue false

Hydrothermal alteration of a saponitic bentonite: mineral reactivity and evolution of surface properties

Published online by Cambridge University Press:  09 July 2018

J. Cuevas*
Affiliation:
Departamento Química Agrícola, Geología y Geoquímica, Universidad Autónoma de Madrid, Cantoblanco s/n, 28049 Madrid, Spain
A. Garralón
Affiliation:
Departamento Química Agrícola, Geología y Geoquímica, Universidad Autónoma de Madrid, Cantoblanco s/n, 28049 Madrid, Spain
S. Ramírez
Affiliation:
Departamento Química Agrícola, Geología y Geoquímica, Universidad Autónoma de Madrid, Cantoblanco s/n, 28049 Madrid, Spain
S. Leguey
Affiliation:
Departamento Química Agrícola, Geología y Geoquímica, Universidad Autónoma de Madrid, Cantoblanco s/n, 28049 Madrid, Spain

Abstract

Saponitic bentonite mined in the Magan deposit (Toledo, Spain), has been classified as a suitable clay barrier in the storage of high-level radioactive waste. Several hydrothermal alteration assays have been carried out in Teflon reactors at 45, 60, 90, 120, 175 and 200°C for periods of up to 1 y. The mineral components of bentonite are stable below 175°C. At and above this temperature, the accessory sepiolite transforms into a monomineral phase of saponitic composition. The texture of the clay also changes. A rise in temperature above 120°C causes a decrease in the proportion of the <2 μm size-fraction, a reduction of BET and total surface areas and an increase in the relative volume of micropores (<20 Å). This process has been interpreted as the formation of granular aggregates that preserve a micropore network. This new arrangement of the aggregates produces a significant reduction in the free swelling volume.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barahona, E. (1974) Arcillas de ladriler ía de la provincia de Granada. Evaluación de algunos ensayos de materias primas. Tesis Doctoral, Univ. Granada, Spain.Google Scholar
Brookins, D.G. (1984) Geochemical Aspects of Radioactive Waste Disposal. Springer-Verlag. New York.Google Scholar
Chang, H.K., Mackenzie, F.T. & Schoonmaker, J. (1986) Comparison between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian Offshore Basins. Clays Clay Miner. 34, 407423.CrossRefGoogle Scholar
Cuevas, J., Medina, J.A. & Leguey, S. (1992) Saponitic clays from the Madrid Basin: Accesory minerals influence in hydrothermal reactivity. Appl. Clay Sci. 7, 185189.CrossRefGoogle Scholar
Cuevas, J., Pelayo, M., Rivas, P. & Leguey, S. (1993) Characterization of Mg-clays from the Neogene of the Madrid Basin and their potential as a backfilling and sealing material in high level radioactive waste disposal. Appl. Clay Sci. 7, 383406.CrossRefGoogle Scholar
Cuevas, J., Leguey, S. & Pusch, R. (1994) Hydrothermal stability of saponitic clays from the Madrid Basin. Appl. Clay Sci. 8, 467484.Google Scholar
Cuevas, J., Garralón, A., Ramírez, S. & Leguey, S. (1998) Kinetic approach to the mineral reaction processes during hydrothermal treatment of a saponitic clay. Clay Miner. 33, 409421.CrossRefGoogle Scholar
De Santiago, C., Suarez, M., García, E., Dominguez, M.C. & Doval, M. (1998) Electron microscopic study of the illite-smectite transformation in the bentonites from Cerro del Aguila (Toledo, Spain). Clay Miner. 33, 501510.Google Scholar
Galán, E., Alvarez, A. & Esteban, M.A. (1986 ) Characterization and technical properties of a Mgrich bentonite. Appl. Clay Sci. 1, 295309.Google Scholar
García del Cura, M.A., Dabrio, C.J. & Ordonñez, S. (1996) Mineral Resources of the Tertiary deposits of Spain. Pp. 2641 in: Tertiary Basins of Spain (Friend, P.F. & Dabrio, C.J., editors). Cambridge University Press. New York.CrossRefGoogle Scholar
Golden, D.C., Dixon, J.B., Shadfan, H. & Kippenberger, L.A. (1985) Palygorskite and sepiolite alteration under alkaline conditions. Clays Clay Miner. 33, 4450.Google Scholar
Grauer, R. (1994) Bentonite as a backfilling material in a high level waste repository. MRS Bull. 12, 4346.CrossRefGoogle Scholar
Gu¨ven, N. & Carney, L.L. (1979) The hydrothermal transformation of sepiolite to stevensite and the effect of added chlorides and hydroxides. Clays Clay Miner. 27, 253260.CrossRefGoogle Scholar
Hillier, S. (1993) Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian basin, Scotland. Clays Clay Miner. 41, 240259.Google Scholar
Huertas, F.J. (1991) Síntesis hidrotermal de caolinita. Estudio cinético. Tesis doctoral. Univ. Granada, Spain.Google Scholar
Iiyama, J.T.A. & Roy, R. (1963) Unusually stable saponite in the system Na2O-MgO-Al2O3-SiO2. Clay Miner. Bull. 29, 161171.Google Scholar
Inoue, A. & Utada, M. (1991) Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan. Am. Miner. 76, 628640.Google Scholar
Jones, B.F. & Galán, E. (1988) Sepiolite and palygorskite. Pp. 631673 in. Hydrous Phyllosilicates (exclusive of the Micas) (Bayley, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Kawano, M. & Tomita, K. (1991) Dehydration and rehydration of saponite and vermiculite. Clays Clay Miner. 39, 174183.Google Scholar
Keeling, P.S. (1961) The examination of clays by IL/ MA. Trans. Brit. Ceram. Soc. 60, 217244.Google Scholar
Komarneni, S. (1989) Mechanisms of palygorskite and sepiolite alteration as deduced from solid-state 27Al and 29Si Nuclear Magnetic Resonance Spectroscopy. Clays Clay Miner. 37, 469473.CrossRefGoogle Scholar
Kristmannsdottir, H. (1978) Alteration of basaltic rock by hydrothermal activity at 100-3008C. Proc. Int. Clay Conf. Oxford, 359367.Google Scholar
Leguey, S., Pozo., M. & Medina, J.A. (1985) Polygenesis of sepiolite and palygorskite in a fluvio-lacustrine environment in the Neogene Basin of Madrid. Miner. Petrogr. Acta, 29-A, 287301.Google Scholar
Meunier, A., Velde, B. & Griffault, L. (1998) The reactivity of bentonites: a review. An application to clay barrier stability for nuclear waste storage. Clay Miner. 33, 187196.CrossRefGoogle Scholar
Miyasiro, A., Shido, F. & Ewing, M. (1971) Metamorphism in the Mid-Atlantic Ridge near 24 and 30°N. Phil. Trans. Roy. Soc. Lond. A-268, 589603.Google Scholar
Nagy, K.L. (1995) Dissolution and precipitation kinetics of sheet silicates. Pp. 173233 in. Chemical Weathering Rates of Silicate Minerals (White, A.F. & Brantley, S.L., editors). Reviews in Mineralogy, 31. Mineralogical Society of America, Washington, D.C.Google Scholar
;Ordonñez, S., Calvo, J.P., García del Cura, M.A., Alonso Zarza & Hoyos, M. (1991) Sedimentology of Sodium Sulphate and Special Clays from the Tertiary Madrid Basin (Spain). Spec. Publ. Int. Assoc. Sed. 13, 3955.Google Scholar
Oscarson, D.W. & Dixon, D.A. (1989) The effect of steam in montmorillon ite. Appl. Clay Sci. 4, 279292.Google Scholar
Pozo, M., Casas, J., Moreno, A. & Medina, J.A. (1992) Magnesium clay paleosoils from Madrid Neogene Basin (Spain). Mediterranean Clay Meeting (Lipari). (MCM ‘92). Abstracts, 107108.Google Scholar
Pusch, R. (1977) Highly compacted sodium bentonite for isolating rock-deposited radioactive waste products. Nuclear Tech. 45, 153157.Google Scholar
Pusch, R. (1992) Use of bentonite for isolation of reactive waste products. Clay Miner. 27, 358361.Google Scholar
Pusch, R. (1994) Waste Disposal in Rock. Developments in Geotechnical Engineering, 76. Elsevier Science Publications, Amsterdam.Google Scholar
Rhoades, J.D. (1982) Cation exchange capacity. Pp. 149157 in. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (2nd edition) (Page, A.L., Miller, R.H. & Keeney, D.R., editors). ASA-SSSA, 9. Madison, WI.Google Scholar
Roberson, H.E., Jr.Reynolds, R.C., & Jenkins, D.M. (1999) Hydrothermal synthesis of corrensite: A study of the transformation of saponite to corrensite. Clays Clay Miner. 47, 212218.Google Scholar
Rutherford, D.W., Chiou, C.T., & Eberl, D.D. (1997) Effects of exchanged cation on the microporosity of montmorillonite. Clays Clay Miner. 45, 534543.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of the mineralogical composition from X-ray and chemical data for the Pierre Shale. US Geol. Surv. Prof. Pap., 391C.Google Scholar
Seyfried, W.G., Shanks, W.C. & Bischoff, J.L. (1976) Alteration and vein formation on Site 321 basalt. Init. Reps. DSDP, 34, 385392. U.S. Govt. Printing Office, Washington D.C. Google Scholar
Smith, B.F.L. & Mitchell, B.D. (1987) Characterization of poorly ordered minerals by selective chemical methods. Pp. 275292 in: A Handboo k of Determinative Methods in Clay Mineralogy (Wilson, M.J., editor). Blackie, Glasgow, UK.Google Scholar
Tardy, Y., Duplay, J. & Fritz, B. (1987) Stability fields of smectites and illites as a function of temperature and chemical composition. Proc. Int. Meet ing Geochemistry of Earth Sciences and Processes of Mineral Formation. Granada, 1986, 461494.Google Scholar
Touret, O., Pons, C.H., Tessier, D. & Tardy, Y. (1990) Etude de la repartition de l’eau dans des argiles saturées Mg2+ aux fortes teneurs en eau. Clay Miner. 25, 217233.CrossRefGoogle Scholar
Weiss, A. (1989) About sealing of waste disposal by clays with special consideration of organic compounds in percolating water. Appl. Clay Sci. 4, 193209.CrossRefGoogle Scholar
Whitney, G. (1983) The hydrothermal reactivity of saponite. Clays Clay Miner. 31, 18.Google Scholar