Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T08:26:56.587Z Has data issue: false hasContentIssue false

Infrared spectra of muscovites as affected by chemical composition, heating and particle size

Published online by Cambridge University Press:  09 July 2018

Mahmut Sayin
Affiliation:
Institut für Bodenkunde, Technische Universität Hannover, Herrenhäuser Str. 2, 3000 Hannover 21, Federal Republic of Germany
H. Graf von Reichenbach
Affiliation:
Institut für Bodenkunde, Technische Universität Hannover, Herrenhäuser Str. 2, 3000 Hannover 21, Federal Republic of Germany

Abstract

Nine muscovite samples from different localities were analysed for all major chemical elements and examined by infrared spectroscopy in the range of 4000–250 cm−1. Iron in the octahedral positions was found to cause an intensity decrease and shifting of some absorption bands. Other structural cations were found not to be effective in producing intensity and frequency changes due to the narrow variations in their amounts. Heating studies indicated that at about 800°C muscovite transforms into a dehydroxylated phase which is stable at least up to 1000°C. Particle size studies showed that 5 µm is the upper size limit for a representative spectrum.

Résumé

Résumé

Neuf échantillons de muscovite de différentes localités ont été analysés pour déterminer tousles principaux éléments chimiques et examinés par spectroscopie infrarouge dans la gamme de 4000–250 cm−1. On a constaté que du fer situé aux positions octaédriques causait une diminution d'intensité et un déplacement de certaines bandes d'absorption. On a trouvé que d'autres cations de structure ne produisaient pas de modifications d'intensité et de fréquence en raison des étroites variations de leurs quantités. Des études par chauffage ont indiqué qu'à environ 800°C, la muscovite se transforme en une phase déshydroxylée qui est stable jusqu'à au moins 1000°C. Des études de la taille des particules ont montré que 5 µm est la limite supérieure pour un spectre représentatif.

Kurzreferat

Kurzreferat

Neun Muskovitproben unterschiedlicher Herkunft wurden auf die Hauptelemente analysiert und im Bereich von 4000–250 cm−1 I R-spektrometrisch untersucht. Oktaedrisch koordiniertes Fe verursacht eine Verminderung and Verschiebung einiger Absorptionsbanden. Für andere Kationen waren keine Intensitäts- und Frequenz-änderungen nachzuweisen, was in den geringen Schwankungen ihres Anteils zu suchen ist. Erhitzungsversuche ergaben, dass sich Muskovit bei etwa 800°C in eine dehydroxylierte Phase umwandelt, welche bis wenigstens 1000° stabil ist. Untersuchungen hinsichtlich des Einflusses der Korngrösse zeigten, dass 5 µm die obere Grenze für ein representatives Spektrum sind.

Resumen

Resumen

Se han analizado nueve muestras de muscovita de distintas localidades para constatar todos los principales elementos químicos y se han examinado mediante espectroscopia por rayos infrarrojos en la gama de 4000–250 cm−1. Se halló que el hierro en las posiciones octaédricas causaba una disminución de intensidad y un desplazamiento de algunas bandas de absorción. Otros cationes estructurales resultó que no eran eficaces en la producción de cambios de la intensidad y la frecuencia debido a las pequeñas variaciones de sus cantidades. Los estudios realizados calentando las muestras han indicado que a alrededor de 800°C la muscovita se transforma en une fase deshidroxilada que es estable por lo menos hasta 1000°C. Los estudios del tamaño de las particulas han mostrado que 5 µm es el limite superior de tamaños para un espectro representativo.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkhipenko, D.K., Kovaleva, L.K. & Grigor'eva, T.N. (1965) Trudȳ Inst. Geol. Geofiz. sib. Otd. 32, 102.Google Scholar
Bradley, W.F. & Grim, R.E. (1951) Am. Miner. 36, 182.Google Scholar
Duyckaerts, G. (1959) Analyst. 84, 201.Google Scholar
Eberhart, J.-P. (1963) Bull. Soc.fr. Miner. Cristallogr. 86, 213.Google Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals (Farmer, V. C., editor), Chap. 15, pp. 345, 347, 350. Mineralogical Society, London.Google Scholar
Farmer, V.C. & Russell, J.D. (1964) Spectrochim. Acta 20, 1149.CrossRefGoogle Scholar
Farmer, V.C. & Russell, J.D. (1966) Spectrochim. Acta 22, 389.Google Scholar
Farmer, V.C., Russell, J.D., Ahlrichs, J.L. & Velde, B. (1967) Bull. Gr. fr. Argiles 19, 5.Google Scholar
Goodman, B.A., Russell, J.D., Fraser, A.R. & Woodhams, F.W.D. (1976) Clays Clay Miner. 24, 53.CrossRefGoogle Scholar
Grim, R.E. & Kulbicki, G. (1961) Am. Miner. 46, 1329.Google Scholar
Grman, D., PISÀRCIK, M. & Novak, V. (1973) Silikdty 17, 55.Google Scholar
Hayashi, H. & Oinuma, K. (1965) Am. Miner. 50, 476.Google Scholar
Hayashi, H. & Oinuma, K. (1967) Am. Miner. 52, 1206.Google Scholar
Heller, L., Farmer, V.C, Mackenzie, R.C, Mitchell, B.D. & Taylor, H.F.W. (1962) Clay Miner. Bull. 5, 56.Google Scholar
Ingram, B.L. (1970) Analyt. Chem. 42, 1825.Google Scholar
Liese, H .C (1963) Am. Miner. 48, 980.Google Scholar
Lyon, J.P. (1967) Physical Methods in Determinative Mineralogy (J. Zussman, editor), Chap. 8, p. 383. Academic Press, New York.Google Scholar
Osipova, N.N., Dmitriev, E.A. & Orlov, D.S. (1976) Mosc. Unì., Soil Sci. Bull. 31, 46. (translated from Vest. Mosk. gos. Univ. Pochvovedenie, 31, 90).Google Scholar
Osthaus, B.B. (1954) Clays Clay Miner. 2, 405.Google Scholar
Russell, J.D., Farmer, V.C. & Velde, B. (1970) Miner. Mag. 37, 869.CrossRefGoogle Scholar
Saksena, B.D. (1964) Trans. Faraday Soc. 60, 1715.Google Scholar
Schwartz, M.C. (1942) Ind. Engng Chem. analyt. Edn, 14, 893.CrossRefGoogle Scholar
Serratosa, J.M. & Hidalgo, A. (1964) Appi. Opt. 3, 315.Google Scholar
Shapiro, L. & Brannock, W.W. (1962) Bull. U.S. geol. Surv. 1144-A. Google Scholar
Smith, J.W. & Bailey, S.W. (1963) Acta crystallogr. 16, 801.CrossRefGoogle Scholar
Stubičan, V. & Roy, R. (1961) Am. Miner. 46, 32.Google Scholar
Stubičan, V. & Roy, R. (1961) Z. Kristallogr., 115, 200.Google Scholar
Stucki, J.W. & Roth, C.B. (1976) Clays Clay Miner. 24, 293.CrossRefGoogle Scholar
Tanner, C.B. & Jackson, M.L. (1947) Proc. Soil Sci. Soc. Am. 12, 40.Google Scholar
Vedder, W. (1964) Am. Miner. 49, 736.Google Scholar
Vedder, W. & Mcdonald, R.S. (1963) J . chem. Phys. 38, 1583.Google Scholar
Vedder, W. & Wilkins, R.W.T. (1969) Am. Miner. 54, 482.Google Scholar
Wardle, R. & Brindley, G.W. (1972) Am. Miner. 57, 732.Google Scholar
Yoe, J.H. & Jones, A.L. (1944) Analyt. Chem. 16, 111.Google Scholar
Yoe, J.H. & Armstrong, A.R. (1947) Analyt. Chem. 19, 100.Google Scholar