Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T08:47:28.846Z Has data issue: false hasContentIssue false

Intercalation of Tb(III) into magadiite and characterization of Tb-intercalated magadiites

Published online by Cambridge University Press:  02 January 2018

Yufeng Chen*
Affiliation:
College of Chemistry, Nanchang University, Nanchang 330031, P.R. China
Bao Yao
Affiliation:
College of Chemistry, Nanchang University, Nanchang 330031, P.R. China
Yan Zou
Affiliation:
College of Chemistry, Nanchang University, Nanchang 330031, P.R. China
Yudong Yan
Affiliation:
College of Chemistry, Nanchang University, Nanchang 330031, P.R. China
*

Abstract

The intercalation of Tb(III) into layered magadiite is achieved by three-step ion exchanges with H+/Na+, TBA+ (tetra-n-butylammonium ions)/H+ and Tb(EDTA)3+/TBA+. Various techniques, including powder X-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive X-ray (SEM-EDX), thermogravimetric and differential thermogravimetry (TG-DTG), Fourier transform infrared (FTIR) spectroscopy, and photoluminescent spectroscopy (PL), were employed to characterize the Tb-intercalated magadiites. The XRD results revealed that the basal spacing of the Tb-intercalated magadiites was obviously larger than that of the Na-magadiite, confirming the intercalation. The IR spectra showed no bands attributable to EDTA in the Tb-intercalated magadiites, indicating that the EDTA has broken away from Tb(III)-ETDA complexes during ion exchange. Moreover, the basal spacing of Tb-intercalated magadiite tends to increase slightly with the increase in water content in the Tb-intercalated magadiite. The PL spectra show weak emissions, attributed to 5D4-7FJ (J = 3, 4, 5, 6) transitions of Tb3+.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aline, O.M. & Alexandre, G.S.P. (2009) Effect of thermal dehydration and rehydration on Na-magadiite structure. Journal of Colloid and Interface Science, 330, 392398.Google Scholar
Ananias, D., Paz, F.A.A., Carlos, L.D. & Rocha, J. (2013) Chiral microporous rare-earth silico-germanates: Synthesis, structure and photoluminescence properties. Microporous and Mesoporous Materials, 166, 5058.Google Scholar
Ayvackl, M., Canimoglu, A., Karabulut, Y., Kotan, Z., Herval, L.K.S., Godoy, M.P.F., GalvoGobato, Y. & Henini, C.N. (2014) Radioluminescence and photo-luminescence characterization of Eu and Tb-doped barium stannate phosphor ceramics. Journal of Alloys and Compounds, 590, 41723.Google Scholar
Cahen, S. & Vangelisti, R. (2011) Versatile behavior upon intercalation by chemical vapor transport of lanthanide trichlorides into graphite. Carbon, 49, 18341841.Google Scholar
Centi, G. & Perathoner, S. (2008) Catalysis by layered materials: A review. Microporous and Mesoporous Materials, 107, 315.Google Scholar
Chang, Z., Evans, D., Duan, X., Boutinaud, P., Roy, M. & Forano, C. (2006) Preparation and characterization of rare earth-containing layered double hydroxides. Journal of Physical Chemistry Solids, 67, 10541057.Google Scholar
Chen, Y.F. & Yu, G.S. (2013) Synthesis and optical properties of composites based on ZnS nanoparticles embedded in layered magadiite. Clay Minerals, 48, 739748.Google Scholar
Davesnne, C., Ziani, A., Labbé, C., Marie, P., Frilay, C. & Portier, X. (2014) Energy transfer mechanism between terbium and europium ions in zinc oxide and zinc silicates thin films. Thin Solid Films, 553, 3337.Google Scholar
Domaradzki, J., Prociow, E.L., Kaczmarek, D., Borkowska, A., Berlicki, T. & Prociow, K. (2009) Structural and optical properties of terbium in TiO2 matrix. Optical Materials, 31, 13491352.Google Scholar
Essawy, A.A. (2014) Highly selective antenna effect in polystyrene membrane immobilized 2-pyridone sen-sitizer: Novel spectrofluorimetric method for assessment of nanoscale terbium (III). Sensors and Actuator B, 196, 640646.Google Scholar
Eugster, H.B. (1967) Hydrous sodium silicate from lake Magadi, Kenya: precursors for bedded chert. Science, 157, 11771180.Google Scholar
Evans, R.C., Ananias, D., Douglas, A., Douglas, P., Carlos, L.D. & Rocha, I. (2008a) Energy transfer and emission decay kinetics in mixed microporous lanthanide silicates with unusual dimensionality. Journal of Physical Chemistry C, 112, 260268.Google Scholar
Evans, R.C., Carlos, L.D., Douglas, P. & Rocha, J. (2008b) Tuning the emission colour in mixed lanthanide microporous silicates: energy, transfer, composition and chromaticity. Journal of Materials Chemistry, 18, 11001107.CrossRefGoogle Scholar
Eypert-Blaison, C., Villieras, F., Michot, L.J., Pelletier, M., Humbert, B., Ghanbaja, J. & Yvon, J. (2002) Surface heterogeneity of kanemite, magadiite and kenyaite: a high-resolution gas adsorption study. Clay Minerals, 37, 531542.Google Scholar
Fujita, I., Kuroda, K. & Ogawa, M. (2005) Adsorption of alcohols from aqueous solutions into a layered silicate modified with octyltrichlorosilane. Chemistry of Materials, 17, 37173722.CrossRefGoogle Scholar
Garces, J.M., Rocke, S.C., Crowder, C.E. & Hasha, D.L. (1988) Hypothetical structures of magadiite and sodium octosilicate and structural relationships between the layered alkali metal silicates and the mordenite- and pentasil-group zeolites. Clays and Clay Mineral, 36, 409418.Google Scholar
Greig, N.E., Einkauf, J.D., Clark, J.M., Corcoran, E.J., Karrama, I.E., Kent, C.A., Eugene, V.E., Chan, B.C. & Lill, D.T. (2015) Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate. Journal of Solid State Chemistry, 225, 402109.CrossRefGoogle Scholar
Gu, Q.Y., Pan, G.H., Ma, T., Huang, G.L., Sun, G.B., Ma, S.L. & Yang, X.J. (2014) Eu3+ luminescence enhancement by intercalation of benzenepolycarboxylic guests into Eu3+-doped layered gadolinium hydroxide. Materials Research Bulletin, 53, 234239.Google Scholar
Huang, Y., Jiang, Z. & Schwieger, W. (1999) Vibrational spectroscopic studies of layered silicates. Chemistry of Materials, 11, 12101217.CrossRefGoogle Scholar
Ide, Y. & Ogawa, M. (2007) Interlayer modification of a layered titanate with two kinds of organic functional units for molecular specific adsorption. Angewandte Chemie (International edition, in English), 46, 84498451.Google Scholar
Ide, Y., Iwasaki, Y. & Ogawa, M. (2011a) Molecular recognition of 4-nonylphenol on a layered silicate modified with organic functionalities. Langmuir, 27, 25222527.Google Scholar
Ide, Y., Ochi, N. & Ogawa, M. (2011b) Effective and selective adsorption of Zn2+ from seawater on a layered silicate. Angewandte Chemie (International edition, in English), 50, 654656.Google Scholar
Ismail, A.A., Abboudi, M., Holloway, P. & El-Shall, H. (2007) Photoluminescence from terbium doped silica-titania prepared by a sol-gel method. Materials Research Bulletin, 42, 137142.Google Scholar
Jia, Y.Q., Zhao, S. & Song, Y.F. (2014) The application of spontaneous flocculation for the preparation of lanthanide-containing polyoxometalates intercalated layered double hydroxides: highly efficient heterogeneous catalysts for cyanosilylation. Applied Catalysis A: General, 487, 172180.Google Scholar
Kabongo, G.L., Mhlongo, G.H., Malwela, T., Mothudi, B.M., Hillie, K.T. & Dhlamini, M.S. (2014) Microstructural and photoluminescence properties of sol-gel derived Tb3+ doped ZnO nanocrystals. Journal of Alloys and Compounds, 591, 156163.Google Scholar
Kawashima, Y.S., Gugliotti, C.F., Yee, M., Tatumi, S.H. & Mittani, J.C.R. (2014) Thermoluminescence features of MgB4O7:Tb phosphor. Radiation Physical Chemistry, 95, 9193.Google Scholar
Kooli, F. & Yan, L. (2009) Thermal stable cetyltrimethy-lammonium-magadiites: Influence of the surfactant solution type. Journal of Physical Chemistry C, 113, 19471952.Google Scholar
Kostova, M.H., Ferreira, R.A., Ananias, D., Carlos, L.D. & Rocha, I. (2006) Photoluminescent layered Y(III) and Tb(III) silicates doped with Ce(III). Journal of Physical Chemistry B, 110, 1531215316.Google Scholar
Kwon, O.Y., Jeong, S.Y., Suh, J.K. & Lee, J.M. (1995) Hydrothermal synthesis of Na-magadiite and Na-kenyaite in the presence of carbonate. Bulletin of the Korean Chemical Society, 16, 737742.Google Scholar
Lagaly, G., Beneke, K. & Weiss, A. (1975) Magadiite and H-magadiite: I. Sodium magadiite and some of its derivatives. American Mineralogist, 60, 642649.Google Scholar
Laughlin, R.B. & Joannopoulos, J.D. (1977) Phonons in amorphous silica. Physical Review B, 16, 29422952.Google Scholar
Li, C., Wang, Y.L., Evans, D.G. & Duan, X. (2009) Thermal evolution and luminescence properties of Zn-Al-layered double hydroxides containing europium(III) complexes of ethylenediaminetetraacetate and nitrilo-triacetate. Industrial & Engineering Chemistry Research, 48, 21622171.Google Scholar
Macedo, T.R., Petrucelli, G.C. & Airoldi, C. (2007) Silicic acid magadiite as a host for n-alkyldiamine guest molecules and features related to the thermodynamics of intercalation. Clays and Clay Minerals, 55, 151159.Google Scholar
Miyamoto, N., Kawai, R., Kuroda, K. & Ogawa, M. (2001) Intercalation of a cationic cyanine dye into the layer silicate magadiite. Applied Clay Science, 19, 3946.Google Scholar
Mizukami, N., Tsujimura, M., Kuroda, K. & Ogawa, M. (2002) Preparation and characterization of Eu-maga-diite intercalation compounds. Clays and Clay Minerals, 50, 799806.Google Scholar
Nunes, A.R., Moura, A.O. & Prado, A.G.S. (2011) Calorimetric aspects of adsorption of pesticides 2,4-D, diuron and atrazine on a magadiite surface. Journal of Thermal Analysis and Calorimetry, 106, 44552.CrossRefGoogle Scholar
Ogawa, M. & Kuroda, K. (1995) Photofunctions of intercalation compounds. Chemical Reviews, 95, 399438.Google Scholar
Ogawa, M. & Maeda, N. (1998) Intercalation of tris(2,2'-bipyridine)ruthenium(II) into magadiite. Clay Minerals, 33, 643650.Google Scholar
Ogawa, M., Ide, Y. & Mizushima, M. (2010) Controlled spatial separation of Eu ions in layered silicates with different layer thickness. Chemical Communications, 46, 22412243.CrossRefGoogle ScholarPubMed
Pal, P.P. & Manam, J. (2013) Photoluminescence and thermoluminescence studies of Tb doped ZnO nanorods. Materials Science and Engineering B, 178, 400408.Google Scholar
Park, K.W., Jung, J.H., Kim, S.K. & Kwon, O.Y. (2009) Interlamellar silylation of magadiite by octyl triethox-ysilane in the presence of dodecylamine. Applied Clay Science, 46, 251254.Google Scholar
Park, K.W., Jung, J.H., Seo, H.J. & Kwon, O.Y. (2009) Mesoporous silica-pillared kenyaite and magadiite as catalytic support for partial oxidation of methane. Microporous and Mesoporous Materials, 121, 219225.CrossRefGoogle Scholar
Peng, S.G., Gao, Q.M., Du, Z.L. & Shi, J.L. (2006) Precursors of TAA-magadiite nanocomposites. Applied Clay Science, 31, 229237.Google Scholar
Pereira, A., Gallardo, H., Conte, G., Quirino, W.G., Legnani, C., Cremona, M. & Bechtold, I.M. (2012) Investigation of the energy transfer mechanism in OLEDs based on a new terbium b-diketonate complex. Organic Electronics, 13, 9097.Google Scholar
Reisfeld, R., Zelner, M. & Patra, A. (2000) Fluorescence study of zirconia films doped by Eu +, Tb +, and Sm + and their comparison with silica films. Journal of Alloys Compounds, 300/301, 147151.Google Scholar
Ryu, S.J., Kim, A., Kim, M.D., Hong, S.W., Min, S.S., Lee, J.H., Lee, J.K. & Jung, H. (2014) Photoluminescent europium(III) complex intercalated in natural and synthetic clay minerals for enhanced latent fingerprint detection. Applied Clay Science, 101, 5259.Google Scholar
Sarakha, L., Forano, C. & Boutinaud, P. (2009) Intercalation of luminescent Europium(III) complexes in layered double hydroxides. Optical Materials, 31, 562566.CrossRefGoogle Scholar
Schwieger, W., Heidemann, D. & Bergk, K.H. (1985) Nuclear magnetic resonance spectroscopic studies of synthetic sodium silicate hydrates. Revue de Chimie Minérale, 22, 639650.Google Scholar
Soares, J.V., Gugliotti, C.F., Kawashima, Y.S., Tatumi, S. & Mittani, J.C.R. (2014) Thermoluminescence and optically stimulated luminescence characteristics of Al2O3 doped with Tb. Radiation Measurements, 71, 7880.Google Scholar
Sohn, Y. (2014) Structural and spectroscopic character-istics of terbium hydroxide/oxide nanorods and plates. Ceramics International, 40, 1380313811.Google Scholar
Steudel, A., Batenburg, L.F., Fischer, H.R., Weidler, P.G. & Emmerich, K. (2009) Alteration of non-swelling clay minerals and magadiite by acid activation. Applied Clay Science, 4, 95104.Google Scholar
Sun, X., King, J. & Anthony, J.L. (2009) Molecular sieve synthesis in the presence of tetraalkylammonium and dialkylimidazolium molten salts. Chemical Engineering Journal, 147, 25.CrossRefGoogle Scholar
Supronowicz, W., Roessne, F., Schwieger, W., Meilikhov, M. & Esken, D. (2012) Synthesis and properties of Sn-containing magadiite. Clays and Clay Minerals, 60, 254264.Google Scholar
Tiseanu, C., Gagea, B., Parvulescu, V.I., Lórenz-Fonfría, V., Gessner, A. & Kumke, M.U. (2007a) Investigation of the hydrophobization efficiency of terbium-exchanged BEA zeolites by means of FT-IR, TGA. Physical adsorption, and time-resolved photoluminescence. Langmuir, 23, 67816787.Google Scholar
Tiseanu, C., Kumke, M.U., Parvulescu, V.I., Koti, A.S.R., Gagea, B.C. & Martens, J.A. (2007b) Time-resolved photoluminescence of terbium-doped microporous— mesoporous zeolite-1 materials. Journal of Photochemical and Photobiology A: Chemistry, 187, 299304.Google Scholar
Yan, B. & Yao, R.F. (2007) Fabrication of luminescent layered lanthanide silicate hybrids by hydrothermal and sol-gel technology. Colloids and Surfaces A: Physicochemical Engineering Aspects, 304, 8287.Google Scholar
Yue, B., Chen, Y.N., Chu, H.B., Qu, Y.R., Wang, A.L. & Zhao, Y.L. (2014) Synthesis, crystal structures and fluorescence properties of dinuclear Tb(III) and Sm(III) complexes with, 4,6-tri(2-pyridyl)- 1,3,5-triazine and halogenated benzoic acid. Inorganica Chimica Acta, 414, 3945.Google Scholar