Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T08:34:57.208Z Has data issue: false hasContentIssue false

Interlayer Adsorption of Macrocyclic Compounds (Crown-Ethers and Cryptands) in 2:1 Phyllosilicates: II. Structural Features

Published online by Cambridge University Press:  09 July 2018

B. Casal
Affiliation:
Instituto de Ciencia de Materiales, CSIC, C/Serrano ll5-bis, 28006 Madrid, Spain
P. Aranda
Affiliation:
Instituto de Ciencia de Materiales, CSIC, C/Serrano ll5-bis, 28006 Madrid, Spain
J. Sanz
Affiliation:
Instituto de Ciencia de Materiales, CSIC, C/Serrano ll5-bis, 28006 Madrid, Spain
E. Ruiz-Hitzky
Affiliation:
Instituto de Ciencia de Materiales, CSIC, C/Serrano ll5-bis, 28006 Madrid, Spain

Abstract

Intercalation of macrocyclic compounds (crown-ethers and cryptands) in 2:1 charged phyllosilicates is a topotactic reaction, the lamellar structure of the pristine material being preserved. X-ray diffraction and spectroscopic (IR, NMR) results provide information on the main structural characteristics of the intercalates. Guest species, which form 1 : 1 or 2 : 1 ligand/cation intracrystalline complexes, lie flat or tilting between the host layers as can be deduced from the increase in the basal space of the silicate and the dichroic effect observed on the CH and NH IR vibration bands of the guest species, after intercalation. The chemical shift observed in 23Na NMR spectra of the solids is associated with the different environment of the cation before and after the intercalation process.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aranda, P., Galvan, J.C., Casal, B. & Ruiz-Hitzky, E. (1991) Characterization of clay-polyoxyethylene based membranes using AC impedance spectroscopy. Key Engineering Materials. 61 & 62, 469472.Google Scholar
Aranda, P., Galvan, J.C., Casal, B. & Ruiz-Hitzky, E. (1992) Ion-conductivity in layer silicates controlled by intercalation of macrocyclic and polymeric oxyethylene compounds. Electrochim. Act, 37, 15731577.CrossRefGoogle Scholar
Aranda, P., Casal, B., Fripiat, J.J. & Ruiz-Hitzky, E. (1993) Intercalation of macrocyclic compounds (crown- ethers and cryptands) into 2:1 phyllosilicates: stability and calorimetric study. Langmuir (in press).CrossRefGoogle Scholar
Bush, M.A. & Truter, M.R. (1972) Crystal structures of complexes between alkali-metal salts and cyclic polyethers. Part III. Aquo-(2,3-benzo-l,4,7,10,13-pen- taoxacyclopentadec-2-ene) sodium iodide. J. Chem. Soc. Perkin Trans. II 341344.Google Scholar
Casal, B. (1983) Estudio de la interación de compuestos macrocíclicos (éteres corora y criptandos) con filosilica- tos. PhD thesis, Univ. Complutense, Madrid, Spain.Google Scholar
Casal, B. & Ruiz-Hitzky, E. (1985) Estudio por espectros- copia IR y UV de la adsorción interlaminar de poliéteres macrociclicos en filosilicatos. Op. Pur. Apl, 18, 4958.Google Scholar
Casal, B. & Ruiz-Hitzky, E. (1986) Interlayer adsorption of macrocyclic compounds (crown-ethers and cryptands) in 2:1 phyllosilicates. I. Isotherms and kinetics. Clay Miner, 21, 17.CrossRefGoogle Scholar
Casal, B., Ruiz-Hitzky, E., Van Vaeck, L. & Adams, F.C. (1988) Laser microprobe mass spectrometry (LMMS) of intracrystalline crown ether and cryptand complexes in layer silicates. J. Inclusion Phenom, 6, 107118.CrossRefGoogle Scholar
Farmer, V.C. (editor) (1974) The Infrared Spectra of Minerals. Mineralogical Society, London.Google Scholar
Izatt, R.M. & Christensen, J.J. (editors), (1979, 1981) Progress in Macrocyclic Chemistry,Vols. I and II. John Wiley & Sons, New York.Google Scholar
Laperche, V., Lambert, J.F., Prost, R. & Fripiat, J.J. (1990) High-resolution solid-state NMR of exchangeable cations in interlayer surface of a swelling mica: 23Na, mCd and 133Cs vermiculites. J. Phys. Chem, 94, 88218831.CrossRefGoogle Scholar
Lehn, J.M. (1978) Cryptates: the chemistry of macropolycyclic inclusion complexes. Acc. Chem. Res, 11, 4957.CrossRefGoogle Scholar
Luca, V., Cardile, C.M. & Meinhold, R.H. (1989) High- resolution multinuclear NMR study of cation migration in montmorillonite. Clay Miner, 24, 115119.CrossRefGoogle Scholar
Pauling, L. (1986) The Nature of the Chemical Bond,3rd edition, Cornell University Press, New York.Google Scholar
Poonia, N.S. (1979) Multidentate macromolecules: principles of complexation with alkali and alkaline earth cations. Pp. 115-155 in: Progress in Macrocyclic Chemistry. Vol. 1 (R.M. Izatt & J.J. Christensen, editors), John Wiley & Sons, New York.Google Scholar
Prost, R. (1975) Study of clay hydration: the water-mineral interactions and the water retention mechanism. II. Study of a smectite (hectorite) .Ann. Agron. 26, 463535.Google Scholar
Ross, G.I. & Mortland, M.M. (1966) A soil beidellite. Soil Sci. Soc. Am. Proc, 30, 337340.CrossRefGoogle Scholar
Ruiz-Hitzky, E. & Casal, B. (1978) Crown ether intercalations with phyllosilicates. Natur, 276, 596597.Google Scholar
Ruiz-Hitzky, E. & Casal, B. (1986) Intracrystalline com- plexation by crown ethers and cryptands in clay minerals. Pp. 179-189 in: Chemical Reactions in Organic and Inorganic Constrained Systems, (R. Setton, editor). D. Reidel Pub. Co., Dordrecht, Holland.Google Scholar
Serratosa, J.M. (1965) Use of infrared spectroscopy to determine the orientation of pyridine sorbed on mont- morillonite. Natur, 208, 679680.CrossRefGoogle Scholar
Tabeta, R., Aida, M. & Saito, H. (1986) A high-resolution solid-state 23Na-NMR study of sodium complexes with solvents, small ligand molecules and ionophores. 23Na chemical shifts as means for identification and characterization of ion-ion, ion-solvent, and ion-ligand interactions. Bull. Chem. Soc. Jpn, 59, 19571966.CrossRefGoogle Scholar
Truter, M.R. (1973) Structures of organic complexes with alkali metal ions. Structure & Bondin, 16, 71111.CrossRefGoogle Scholar
Truter, M.R. & Pedersen, C.J. (1971) Cryptates. Endeavou, 30, 142145.CrossRefGoogle Scholar
Weiss, Ch.A., Kirkpatrick, R.J. & Altaner, S.P. (1990a) The structural environments of cations adsorbed on clays: 133Cs variable-temperature MAS-NMR spectroscopy study of hectorite. Geochim. Cosmochim. Act, 54, 16551669.Google Scholar
Weiss, Ch.A., Kirkpatrick, R.J. & Altaner, S.P. (1990b) Variations in interlayer cation sites of clay minerals as studied by 133Cs MAS nuclear magnetic resonance spectroscopy. Am. Miner, 75, 970982.Google Scholar