Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T03:40:24.033Z Has data issue: false hasContentIssue false

Isomerization of limonene over natural zeolite-clinoptilolite

Published online by Cambridge University Press:  22 April 2019

Monika Retajczyk
Affiliation:
West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, Pułaskiego 10, PL 70-322 Szczecin, Poland
Agnieszka Wróblewska*
Affiliation:
West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, Pułaskiego 10, PL 70-322 Szczecin, Poland
Alicja Szymańska
Affiliation:
West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Institute of Inorganic Chemical Technology and Environment Engineering, Pułaskiego 10, PL 70-322 Szczecin, Poland
Beata Michalkiewicz
Affiliation:
West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Institute of Inorganic Chemical Technology and Environment Engineering, Pułaskiego 10, PL 70-322 Szczecin, Poland

Abstract

The isomerization of limonene over natural the zeolite, clinoptilolite, was studied. The main products of limonene isomerization were terpinolene, α-terpinene, γ-terpinene and p-cymene. These products have numerous applications in the cosmetic, food and pharmaceutical industries. The main parameters affecting limonene isomerization were reaction time, temperature and catalyst content. These parameters varied within the following ranges: reaction time 15–1440 min; temperature 155–175°C; and catalyst content 5–15 wt.%. Terpinolene was obtained after reaction for 60 min at 175°C using 10 wt.% catalyst. p-Cymene was produced using similar conditions as for terpinolene except for a longer reaction time of 1440 min. The use of optimum experimental conditions allowed the greatest amounts of the desired products to be obtained in the shortest time.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Guest Associate Editor: A. Dakovic.

This paper was presented at the 10th International Conference on the Occurrence, Properties, and Utilization of Natural Zeolites (June 2018, Krakow).

References

Allahverdiev, A.I., Irandoust, S. & Murzin, Y.D. (1999) Isomerization of α-pinene over clinoptilolite. Journal of Catalysis, 185, 352362.Google Scholar
Ambrozova, P., Kynicky, J., Urubek, T. & Nguyen, V.D. (2017) Synthesis and modification of clinoptilolite. Molecules, 22, 11071120.Google Scholar
Anielak, A.M. (2006) The physicochemical properties of manganese dioxide-modified clinoptylolite. Przemysł Chemiczny, 85, 487491.Google Scholar
Aydin, E., Turkez, H. & Tasdemir, S. (2013) Anticancer and antioxidant properties of terpinolene in rat brain cells. Archives of Industrial Hygiene and Toxicology, 64, 415424.Google Scholar
Boles, J.R. (1972) Composition, optical properties, cell dimensions and thermal stability of some heulandite group zeolites. American Mineralogist, 57, 14631493Google Scholar
Burlet, E. (1997) Les Tufs Volcaniques zéolitisés des Rhodopes (Bulgarie) Caractérisation, Propriétés Physico-chimiques. MSc thesis, Aix-Marseille University, Marseille, France.Google Scholar
Catrinescu, C., Fernandes, C., Castilho, P. & Breen, C. (2006) Influence of exchange cations on the catalytic conversion of limonene over Serra de Dentro (SD) and SAz-1 clays: correlations between acidity and catalytic activity/selectivity. Applied Catalysis A: General, 311, 172184.Google Scholar
Detrekoy, E.J., Jacobs, P.A., Kallo, D. & Uytterhoeven, J.B. (1973) The nature of catalytic activity of hydroxyl groups in clinoptilolite. Journal of Catalysis, 32, 442452.Google Scholar
Eftekhara, F., Yousefzadia, M., Aziziana, D., Sonbolib, A. & Salehi, P. (2005) Essential oil composition and antimicrobial activity of Diplotaenia damavandica. Journal for Nature Research, 60, 821825.Google Scholar
Grau, R.J., Zgolicz, P.D., Gutierrez, C. & Taher, H.A. (1999) Liquid phase hydrogenation, isomerization and dehydrogenation of limonene and derivatives with supported palladium catalysts, Journal of molecular Catalysis A: Chemical, 148, 203214.Google Scholar
Jamrozik, A., Gonet, A., Stryczek, S., Wojaczek, D. & Maciołek, Ł. (2011) Aktywność sorbentów klinoptylolitowych w środowisku odpadowych płuczek wiertniczych. Wiertnictwo, Nafta, Gaz, 28, 171179.Google Scholar
Johnson, W.E.J. (1985) Process for the isomerization of limonene to terpinolene. Patent Number: US4551570.Google Scholar
Kasperkowski, M. (2014) Materiały Mikro – I Mezoporowate, Jako Napełniacze Aktywne. PhD thesis, Poznań University of Technology, Poznań, Poland.Google Scholar
Kasture, M.W., Joshi, P.N., Soni, H.S., Joshi, V., Choudhari, V.P. & Shiralkar, V.P. (1998) Sorption properties of the natural, K and partially deammoniated (H/NH4) forms of clinoptilolite. Adsorption Science & Technology, 16, 135151.Google Scholar
Kitsopoulos, K.P. (2001) The relationship between the thermal behaviour of clinoptilolite and its chemical composition. Clays and Clay Minerals, 49, 236243.Google Scholar
Lee, C.J., Chen, L.W., Chen, L.G., Chang, T.L., Huang, C.W., Huang, M.C. & Wang, C.C. (2013) Correlations of the components of tea tree oil with its antibacterial effects and skin irritation. Journal of Food and Drug Analysis, 21, 169176.Google Scholar
Lee, H.C., Woo, H.C., Chung, S.H., Kim, H.J., Lee, K.H. & Lee, J.S. (2002a) Effects of metal cation on the skeletal isomerization of 1-butene over clinoptilolite. Journal of Catalysis, 211, 216225.Google Scholar
Lee, S.Y., Yoon, J.H., Kim, J.R. & Park, D.W. (2002b) Degradation of polystyrene using clinoptilolite catalysts. Journal of Analytical and Applied Pyrolysis, 64, 7183.Google Scholar
Leggo, P.J., Ledesert, B. & Christie, G. (2006) The role of clinoptilolite in organo-zeolitic-soil systems used for phytoremediation. Science of the Total Environment, 363, 110.Google Scholar
Martin-Luengo, M.A., Yates, M., Rojoa, S.E., Arribas, D.H., Aguilar, D. & Hitzkya, R.E. (2010) Sustainable p-cymene and hydrogen from limonene. Applied Catalysis A: General, 387, 141146.Google Scholar
Muir, B., Matusik, J. & Bajda, T. (2016) New insights into alkylammonium-functionalized clinoptilolite and Na-P1 zeolite: structural and textural features. Applied Surface Science, 361, 242250.Google Scholar
Passaglia, E. & Sheppard, R. (2001) The crystal chemistry of zeolites. Pp. 8991 in: Natural Zeolites: Occurrence, Properties, Applications (Bish, D.W. & Ming, D.W., editors). Reviews in Mineralogy and Geochemistry, 45. Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Pleśniak, J. & Trzop, W. (2016) Zeolites in everyday life. Analit, 2, 146151.Google Scholar
Pozan, G.S., Ozc, Z. & Boz, I. (2010) Total oxidation of toluene over metal oxides supported on a natural clinoptilolite-type zeolite. Chemical Engineering Journal, 162, 380387.Google Scholar
Retajczyk, M. & Wróblewska, A. (2017) The isomerization of limonene over the Ti-SBA-15 catalyst – the influence of reaction time, temperature, and catalyst content. Catalysts, 7, 273287.Google Scholar
Roberge, D.M., Buhl, D., Niede, J.P., Niederer, J.P. & Hölderich, W.P. (2001) Catalytic aspects in the transformation of pinenes to p-cymene. Applied Catalysis A: General, 215, 111124.Google Scholar
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquérol, J. & Sing, K.S.W. (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Applied Chemistry, 87, 10511069.Google Scholar
Sprynsky, M., Buszewski, B., Terzyk, A.P. & Namiesnik, J. (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science, 304, 2128.Google Scholar
Stanislaus, A. & Yeddanalpalli, L.M. (1972) Vapor phase catalytic transformations of terpene hydrocarbons in the C10H16 series I. Isomerization of α-pinene over alumina. Canadian Journal of Chemistry, 50, 6174.Google Scholar
Wróblewska, A. (2014) The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts. Molecules, 19, 1990719922.Google Scholar
Zabihi-Mobarakeh, H. & Nezamzadeh-Ejhieh, A. (2015) Application of supported TiO2 onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2,4-dinitroaniline aqueous solution. Journal of Industrial and Engineering Chemistry, 26, 315321.Google Scholar