Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T08:39:07.297Z Has data issue: false hasContentIssue false

A Kaolin-smectite interstratification sequence from a red and black complex

Published online by Cambridge University Press:  09 July 2018

C. Bühmann
Affiliation:
Soil and Irrigation Research Institute, Private Bag X 79, Pretoria 0001, Republic of South Africa
P. L. C. Grubb
Affiliation:
Soil and Irrigation Research Institute, Private Bag X 79, Pretoria 0001, Republic of South Africa

Abstract

The sequential development of kaolin by progressive alteration of smectite, involving kaolin-smectite interstratifications as a genetic link is described from a red and black complex. Mineral compositions were studied using XRD, DTA and XRF techniques. The basalt-derived soils are situated along a 600 m transect and grade in colour from dark grey (10 YR 3/1) to red (5 YR 3/3). The kaolin proportions in the interstratification increase almost linearly with increasing reddening up to ∼80%. Whole-soil chemical analyses exhibit no significant variations in the major element composition, but dithionite extractable Fe increases along the transect from 1% to 4·16%. Hematite and goethite are the only secondary iron phases. Topographic differences are slight but sub-surface bedrock contours plus appreciable variations in sand content between red and black soils could be genetically significant.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschuler, Z.S., Dwornik, E.J. & Kramer, J. (1963) Transformation of montmorillonite to kaolinite during weathering. Science, 141, 148–152.Google Scholar
Brown, G. & Brindley, G.W. (1980) X-ray diffraction procedures for clay mineral identification. Pp. 305-359 in: Crystal Structures of Clay Minerals and their X-ray Identification(Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Cradwick, P.D. & Wilson, M.J. (1972) Calculated X-ray diffraction profiles for interstratified kaolinite- montmorillonite. Clay Miner., 9, 395405.Google Scholar
Delvaux, B., Herbillon, A.J., Vielvoye, L. & Mestdagh, M.M. (1990) Surface properties and clay mineralogy of hydrated halloysitic soil clays: II. Evidence for the presence of halloysite/smectite (H/Sm) mixed-layer clays. Clay Miner., 25, 141–160.Google Scholar
Du Ton, A.L. (1954) The Geology of South Africa, pp. 611. Oliver & Boyd, Edinburgh.Google Scholar
Eswaran, H. (1979) The alteration of plagioclases and augites under differing pedo-environmental conditions. J. Soil Sci., 30, 547–555.Google Scholar
Eswaran, H. & De Coninck, F. (1971) Clay mineral formations and transformations in basaltic soils in tropical environments. Pedologie, 21, 181–210.Google Scholar
Ferguson, J.A. (1954) Transformations in clay minerals in black earths and red loams of basaltic origin. Aust. J. Agric. Res., 5, 98–108.Google Scholar
Fitzpatrick, R.W. & Le Roux, J. (1977) Mineralogy and chemistry of a Transvaal black clay toposequence. J. Soil Sci., 28, 165–179.Google Scholar
Fitzpatrick, R.W. & Schwertmann, U. (1982) Al-substituted goethite—an indicator of pedogenic and other weathering environments in South Africa. Geoderma, 27, 335–347.Google Scholar
Gibbs, R.J. (1965) Error due to segregation in quantitative clay mineral X-ray diffraction mounting techniques. Am. Miner., 50, 741–751.Google Scholar
Glasmann, J.R. (1982) Alteration of andesite in wet, unstable soils of Oregon's Western Cascades. Clays Clay Miner., 30, 253–263.Google Scholar
Greene-Kelly, R. (1953) The identification of montmorillonoids in clays. J. Soil Sci., 4, 233–237.Google Scholar
Grubb, P.L.C. (1988) The nature and genesis of black and red soils in the Springbok Flats and Rustenburg Districts. P. 38 in : Progr. Rep. 1988(unpub.). Soil & Irrigation Res. Inst., Pretoria, S. Africa.Google Scholar
Herbillon, A .J., Frankart, R. & Vielvoye, L. (1988) An occurrence of interstratified kaolinite-smectite minerals in a red-black soil toposequence. Clay Miner., 16, 195–201.Google Scholar
Jaynes, W.F., Bigham, J.M., Smeck, N.E. & Shipitalo, M.J. (1989) Interstratified 1:1-2:1 mineral formation in a polygenetic soil from Southern Ohio. Soil Sci. Soc. Am. J., 53, 1888–1894.CrossRefGoogle Scholar
Kantor, W. & Schwertmann, U. (1974) Mineralogy and genesis of clays in red-black soil toposequences on basic igneous rocks in Kenya. J. Soil. Sci., 25, 67–78.Google Scholar
Kämpf, N. & Schwertmann, U. (1982a) The 5-M-NaOH concentration treatment for iron oxides in soils. Clays Clay Miner., 30, 401–408.Google Scholar
Kämpf, N. & Schwertmann, U. (1982b) Quantitative determination of goethite and hematite in kaolinitic soils by X-ray diffraction. Clay Miner., 17, 359–363.Google Scholar
Macvicar, C.N., De Villiers, J.M., Loxton, R.F., Verster, E., Lambrechts, J.J.N., Merryweather, F.R., Le Roux, J., Van Rooyen, T.H. & Harmse, H. J. von H. (1977) Soil Classification. A Binomial System for South Africa, pp. 150. Sci. Bull. No. 390. Dept. Agri. Tech. Services, Pretoria.Google Scholar
McKeague, J.A. (1978) Manual on Soil Sampling and Methods of Analysis., 2nd ed., pp. 212. Can. Soc. Soil Sci., Can. Soil Survey Comm., Ottawa.Google Scholar
Norrish, K. & Pickering, J.G. (1983) Clay minerals. Pp. 281-308 in: Soils, an Australian Viewpoint. Division of Soils, CSIRO, Melbourne. Academic Press, London.Google Scholar
Novich, B.E. & Martin, R.T. (1983) Solvation methods for expandable layers. Clays Clay Miner., 31, 235–238.Google Scholar
Oberholster, R.E. (1969a) Genesis of two different soils on basalt. II. Contribution of transported material. Agrochemophysica, 1, 73–78.Google Scholar
Oberholster, R.E. (1969b) Genesis of two different soils on basalt. I. Mineralogical characteristics. Agrochemophysica, 1, 53–62.Google Scholar
Paquet, H. (1970) Evolution Geochimique des Mineraux Argileux dans les Alterations et les Sols des Climates Mediterranees Tropiquaux a Saisons Contrastees. Mem. Serv. Carte Geol. d'Alsace Lorraine 30.Google Scholar
Pion, J.-C. (1979) Alteration des Massifs Cristallins Basiques en Zone Tropical Seche. Etude de quelque Toposequences en Houte Volta. Sciences Geologiques, Memoir 57, ULP Strasbourg.Google Scholar
Range, K.I., Range, A. & Weiss, A. (1969) Fire-clay type kaolinite or fire clay mineral? Experimental classification of kaolinite-halloysite minerals. Proc. hit. Clay Conf. Tokyo, 313.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249-303 in: Crystal Structures of Clay Minerals and their X-ray Identification(Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Robinson, D. & Wright, V.P. (1987) Ordered illite/smectite and kaolinite/smectite: pedogenic minerals in a Lower Carboniferous paleosol sequence, South Wales? Clay Miner., 22, 109–118.Google Scholar
Sakharov, B.A. & Drits, V.A. (1973) Mixed layer kaolinite-montmorillonite: a comparison of observed and calculated diffraction patterns. Clays Clay Miner., 21, 15–17.Google Scholar
Scheffer, F., Welte, E. & Ludwieg, F. (1958) Zur Frage der Eisenoxid-hydrate im Boden. Chem. Erde, 19, 51–64.Google Scholar
Schultz, L.G., Shepard, A.O., Blackman, P.D. & Starkey H,C. (1971) Mixed-layer kaolinite-montmorillonite from the Jukatan Peninsula, Mexico. Clays Clay Miner., 19, 137–150.Google Scholar
Schwertmann, U. & Murad, E. (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner., 31, 277–284.Google Scholar
Sudo, T. & Hayashi, H. (1956) A randomly interstratified kaolin-montmorillonite in acid clay deposits in Japan. Nature, 178, 1115–1116.Google Scholar
Tan, K.H. & Hajek, B.F. (1977) Thermal analysis of soils. Pp. 865-884 in: Minerals in Soil Environments(Dixon, J.B. & Weed, S.B., editors). Soil Sci. Soc. Am., Madison, Wisconsin, USA.Google Scholar
Taylor, K.P. (1972) An investigation of the clay fraction of soils from the Springbok Flats, Transvaal.M. Sci. thesis, Univ. Natal, Pietermaritzburg, S, Africa.Google Scholar
Thiry, M. & Weber, F. (1977) Convergence de comportement entre les interstratifies kaolinite-smectite et les fireclays. Clay Miner., 12, 83–91.Google Scholar
Wiewiora, A. (1971) A mixed-layer kaolinite-smectite from Lower Silesia, Poland. Clays Clay Miner., 19, 415417.Google Scholar
Wilson, M.J. & Cradwick, P.D. (1972) Occurrence of interstratified kaolinite-montmorillonite in some Scottish soils. Clay Miner., 9, 435–437.CrossRefGoogle Scholar
Yerima, B.P.K., Calhoun, F.G., Senkayi, A.L. & Dixon, J.B. (1985) Occurrence of interstratified kaolinite-smectite in El Salvador Vertisols. Soil Sci. Soc. Am. J., 49, 462466.Google Scholar