Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T08:16:36.667Z Has data issue: false hasContentIssue false

Kerolite-stevensite mixed-layers from the Madrid Basin, Central Spain

Published online by Cambridge University Press:  09 July 2018

J. L. Martin de Vidales
Affiliation:
Departamento de Química Agrícola, Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma, 28049-Madrid
M. Pozo
Affiliation:
Departamento de Química Agrícola, Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma, 28049-Madrid
J. M. Alia
Affiliation:
Laboratorio de Edafología-Mineralogía, Universidad de Castilla-La Mancha, Ronda de Calatrava s/n, Ciudad Real
F. Garcia-Navarro
Affiliation:
Laboratorio de Edafología-Mineralogía, Universidad de Castilla-La Mancha, Ronda de Calatrava s/n, Ciudad Real

Abstract

Structural features of very highly disordered 2:1 trioctahedral phyllosilicates from the Madrid Basin have been studied. Application of Fourier methods to XRD patterns shows that these materials consist of random kerolite-stevensite mixed-layered phases (R = 0) with 50–80% kerolite layers, and have a very small particle size with a mean of three unit-cells stacked in the c* direction. IR spectrum deconvolution in OH-stretching and librational modes seems to indicate five different types of water. Specific surface measurements (N2, BET) indicate anomalous high values (240–320 m2/g). These results suggest important catalytic and surface chemistry applications.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberdi, M.T., Hoyos, M.,Junco, F., Lopez Martinez, N., Morales, J., Sese, C. & Soria, D. (1983) Bioestratigraphie et evolution sedimentairede l’aire de Madrid. Abstr. Int. Coll. Mediterranean Neogene Continental Paleoclimatic Evolution, Montpellier, 1823.Google Scholar
Antunes, M.T., Calvo, J.P., Hoyos, M., Morales, G., Ordonez, S., Pais, J. & Sese, C. (1987) Ensayo e correlacion entre el Neogeno de las areas de Madrid y Lisboa (Cuenca Alta y Baja del rio Tajo). Comun. Serv. Geol. Portugal, 173, 85–102.Google Scholar
Bethke, C.M. & Reynolds, R.C. (1986) Recursive method for determining frequency factors in interstratified clay diffraction calculations. Clays Clay Miner., 34, 224–226.Google Scholar
Brindley, G.W., Bish, D.L. & Wan, H.M. (1977) The nature of kerolite, its relation to talc and stevensite. Mineral Mag., 41, 443452.CrossRefGoogle Scholar
Brindley, G.W. (1981) Long-spacing organics for calibrating long-spacings of interstratified clay minerals. Clays Clay Miner., 29, 67–68.Google Scholar
Eberl, D.D., Jones, B.F. & Khoury, H.N. (1982) Mixed-layer kerolite/stevensite from the Amargosa desert, Nevada. Clays Clay Miner., 30, 321–326.CrossRefGoogle Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331-365 in: The Infrared Spectra of Minerals(Farmer, V. C., editor). Mineralogical Society, London.Google Scholar
Jackson, M.L. (1985) Soil Chemical Analysis. Published by the author, Madison, Wisconsin.Google Scholar
Jones, B.F. (1986) Clay mineral diagenesis in lacustrine sediments. U.S. Geol. Surv. Bull., 1578, 291–300.Google Scholar
Jones, B.F. & Galan, E. (1988) Sepiolite and palygorskite. Pp. 631-674 in: Hydrous Phyllosilicates (Exclusive of Micas).(Bailey, S. W., editor). Reviews in Mineralogy,, 19, Mineralogical Society of America, Washington, DC.Google Scholar
Junco, F. & Calvo, J.P. (1983) Cuenca de Madrid. Pp. 534543 in; Geologia de Espaha, Tomo II.I.G.M.E.Google Scholar
Maksimovic, Z. (1966) ^-kerolite-pimelite series from Goles Mountain. Yugoslavia. Proc. Int. Clay Conf., Jerusalem I, 97105.Google Scholar
Manceau, A. & Calas, G. (1987) Absence of evidence for Ni/Si substitution in phyllosilicates. Clay Miner., 22, 357–362.CrossRefGoogle Scholar
Martin De Vidales, J.L., Pozo, M., Medina, J.A. & Leguey, S. (1988) Formacion de sepiolita-paligorskita en litofacies lutitico-carbonaticas en el sector de Borox-Esquivias (Cuenca de Madrid). Estudios Geol., 44, 718.Google Scholar
Megias, A.G., Leguey, S. & Ordonez, S. (1982) Interpretacion tectosedimentaria de la genesis de fibrosos de la arcilla en series detriticas continentales (Cuencas de Madrid y del Duero). Quinto Congreso Latinoamericano de Geologia, Argentina, Actas II, 427439.Google Scholar
Reynolds, R.C. & Hower, J. (1970) The nature of interlayering in mixed-layer illite-montmorillonite. Clays Clay Miner., 18, 25–36.CrossRefGoogle Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249-303 in: Crystal Structures of Clay Minerals and their X-ray Identification(Brindley, G. W. & Brown, G., editors). Mineralogical Society, London. Google Scholar
Reynolds, R.C. (1986) The Lorentz-polarization factor and preferred orientation in oriented clay aggregates. Clays Clay Miner., 34, 359–367.CrossRefGoogle Scholar
Rull, F. & SDe aja, J.A. (1986) Effect of electrolyte concentration on the Raman spectra of water in aqueous solution. J. Raman Spectr., 17, 167–172.Google Scholar
Srodon, J., Morgan, D J., Eslinger, E.V., Eberl, D.D. & Karlinger, M.R. (1986) Chemistry of illite/smectite and end-member illite. Clays Clay Miner., 34, 368–378.Google Scholar
Suquet, H. & Pezerat, H. (1988) Comments on the classification of trioctahedral 2:1 phyllosilicates. Clays Clay Miner., 36, 184186.Google Scholar
Valle del, J. (1989) Analisis mediante espectroscopia Raman de las propiedades vibracionales del agua y de las soluciones acuosas. PhD thesis, Univ. Valladolid, Spain.Google Scholar
Wiewiora, A., Dubinska, E. & Iwasinska, I. (1982) Mixed-layering in Ni-containing talc like minerals from Szklary, Poland. Proc. Int. Clay Conf, Bologna-Pavia,, 111125.Google Scholar