Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T04:59:18.421Z Has data issue: false hasContentIssue false

MAS NMR and EPR study of structural changes in talc and montmorillonite induced by grinding

Published online by Cambridge University Press:  02 January 2018

Roger Borges
Affiliation:
CEPESQ – Research Center for Applied Chemistry, Department of Chemistry, Federal University of Paraná - PO Box 19032, Curitiba, PR, 81530-980, Brazil
Lívia Macedo Dutra
Affiliation:
NMR Center, Department of Chemistry, Federal University of Paraná - PO Box 19032, Curitiba, PR, 81530-980, Brazil
Andersson Barison
Affiliation:
NMR Center, Department of Chemistry, Federal University of Paraná - PO Box 19032, Curitiba, PR, 81530-980, Brazil
Fernando Wypych*
Affiliation:
CEPESQ – Research Center for Applied Chemistry, Department of Chemistry, Federal University of Paraná - PO Box 19032, Curitiba, PR, 81530-980, Brazil
*

Abstract

The milling process in the solid-state 2:1 clay minerals, montmorillonite and talc, which have different cation exchange capacities, is reported here. Several instrumental techniques were used to monitor systematically the products formed. The dehydroxylation/amorphization of the montmorillonite and talc structures occurs within 3 and 6 h of milling, respectively. Electron paramagnetic resonance spectra indicated that structural Mn2+ was oxidized more quickly in the montmorillonite structure than in talc, while the paramagnetic defects increased during milling. Nuclear magnetic resonance was also used to monitor the environmental changes for Si and Al during milling.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aglietti, E.F. & Lopez, J.M.P. (1992) Physicochemical and thermal-properties of mechanochemically activated talc. Materials Research Bulletin, 27, 12051216.CrossRefGoogle Scholar
Balek, V., Perez-Maqueda, L.A.P., Poyato, J., Cerny, Z., Valle, V.R., Buntseva, I.M. & Perez-Rodriguez, J.L.P. (2007) Effect of grinding on thermal reactivity of ceramic clay minerals. Journal of Thermal Analysis and Calorimetry, 88, 8791.Google Scholar
Balek, V., Perez-Maqueda, L.A.P., Benes, M., Buntseva, I.M., Beckman, I.N. & Perez-Rodriguez, J.L.P. (2008) Thermal behavior of ground talc mineral. Journal of Mining and Metallurgy Section B — Metallurgy, 44, 717.Google Scholar
Borges, R., Brunatto, S.F., Leitão, A.A., Carvalho, G.S.G. & Wypych, F. (2015) Solid-state mechanochemical activation of clay minerals and soluble phosphate mixtures to obtain slow-release fertilizers. Clay Minerals, 50, 153162.Google Scholar
Boulingui, J.E., Nkoumbou, C., Njoya, D., Thomas, F. & Yvon, J. (2015) Characterization of clays from Mezafe and Mengono (Ne-Libreville, Gabon) for potential uses in fired products. Applied Clay Science, 115, 132144.Google Scholar
Çelik, M. & Önal, M. (2014) Polythiophene/Na-montmor-illonite composites via intercalative polymerization. Journal of Thermoplastic Composite Materials, 27, 145159.CrossRefGoogle Scholar
Christidis, G.E., Makri, P. & Perdikatsis, V. (2004) Influence of grinding on the structure and colour properties of talc, bentonite and calcite white fillers. Clay Minerals, 39, 163175.Google Scholar
Christidis, G.E., Dellisanti, F., Valdre, G. & Makri, P. (2005) Structural modifications of smectites mechanically deformed under controlled conditions. Clay Minerals, 40, 511522.Google Scholar
Coelho, C., Azais, T., Bonhomme, C., Coury, L.B., Boissiere, C., Laurent, G. & Massiot, D. (2008) Efficiency of dipolar and J-derived solid-state NMR techniques for a new pair of nuclei ﹛ P, 29Si﹜. Towards the characterization of Si-O-P mesoporous materials. Comptes Rendus Chimie, 11, 387397.Google Scholar
Dellisanti, F. & Valdre, G. (2005) Study of structural properties of ion treated and mechanically deformed commercial bentonite. Applied Clay Science, 28, 233244.Google Scholar
Dellisanti, F., Minguzzi, V. & Valdre, G. (2011) Mechanical and thermal properties of a nanopowder talc compound produced by controlled ball milling. Journal of Nanoparticle Research, 13, 59195926.Google Scholar
Djukic, A., Jovanovic, U., Tuvic, T., Andric, V., Novakovic, J.G., Ivanovic, N. & Matovic, L. (2013) The potential of ball-milled Serbian natural clay for removal of heavy metal contaminants from wastewaters: Simultaneous sorption of Ni, Cr, Cd and Pb ions. Ceramics International, 39, 71737178.CrossRefGoogle Scholar
Du, C. & Yang, H. (2009) Simple synthesis and characterization of nanoporous materials from talc. Clays and Clay Minerals, 57, 290301.Google Scholar
Dumas, A., Martin, F., Le Roux, C., Micoud, P., Petit, S., Ferrage, E., Brendle, J., Grauby, O. & Hooper, M.G. (2013) Phyllosilicates synthesis: a way of accessing edges contributions in NMR and FTIR spectroscopies. Example of synthetic talc. Physics and Chemistry of Minerals, 40, 361373.Google Scholar
Fuentes, A.F. & Takacs, L. (2013) Preparation of multi-component oxides by mechanochemical methods. Journal of Materials Science, 48, 598611.Google Scholar
Galimberti, M., Coombs, M., Cipolletti, V., Spatola, A., Guerra, G., Lostritto, A., Giannini, L., Pandini, S. & Riccò T (2014) Delaminated and intercalated organically modified montmorillonite in poly(1,4-cis-isoprene) matrix. Indications of counterintuitive dynamic-mechanical behavior. Applied Clay Science, 97-98, 816.CrossRefGoogle Scholar
Garcia, F.G., Abrio, M.T.R. & Rodriguez, M.G. (1991) Effects of dry milling on two kaolins of different degrees of crystallinity. Clay Minerals, 26, 549565.Google Scholar
Greenwood, N.N. & Earnshaw, A. (1997) Chemistry of the Elements. Elsevier, Amsterdam, Butterworth-Heinemann, London.Google Scholar
Guarino, A.W.S., Gil, R.A.S., Polivanov, H. & Menezes, S.M.C. (1977) Characterization of a Brazilian smectite by solid state NMR and X-ray diffraction techniques. Journal of the Brazilian Chemical Society, 8, 581586.Google Scholar
He, H., Duchet, J., Galy, J. & Gerard, J. (2005) Grafting of swelling clay materials with 3-aminopropyltriethox-ysilane. Journal of Colloid and Interface Science, 288, 171176.Google Scholar
Hrachova, J., Komadel, P. & Fajnor, V.S. (2007) The effect of mechanical treatment on the structure of montmorillonite. Materials Letters, 61, 33613365.Google Scholar
Isobe, T., Watanabe, T., Cailliere, J.B.E., Legrand, A.P. & Massiot, D. (2003) Solid-state 1H and 27Al NMR studies of amorphous aluminum hydroxides. Journal of Colloid and Interface Science, 261, 320324.Google Scholar
Kinninmonth, M.A., Liauw, C.M., Verran, J., Taylor, R., Edwards-Jones, V., Shaw, D. & Webb, M. (2013) Investigation into the suitability of layered silicates as adsorption media for essential oils using FTIR and GC-MS. Applied Clay Science, 83-84, 415425.Google Scholar
Kudynska, J., Duczmal, T. & Buckmaster, H.A. (1989) Temperature- and time-stability study of the dehydration mechanisms in Ca-montmorillonite — an EPR study. Applied Clay Science, 4, 225233.Google Scholar
Lefebvre, A., Lanzetta, F., Lipinski, P. & Torrance, A.A. (2012) Measurement of grinding temperatures using a foil/workpiece thermocouple. InternationalJournal of Machine Tools and Manufacture, 58, 110.Google Scholar
Martin, F., Ferrage, E., Petit, S., Parseval, P., Delmotte, L., Ferret, J., Arseguel, D. & Salv, S. (2006) Fine-probing the crystal-chemistry of talc by MAS-NMR spectros-copy. European Journal of Mineralogy, 18, 641651.Google Scholar
Mendelovici, E. (2001) Selective mechanochemical reactions on dry milling structurally different silicates. Journal of Materials Science Letters, 20, 8183.CrossRefGoogle Scholar
Mingelgrin, U., Kliger, L., Gal, M. & Saltzman, S. (1978) The effect of milling on the structure and behavior of bentonites. Clays and Clay Minerals, 26, 299307.Google Scholar
O'Dell , L.A., Savin, S.L.P., Chadwick, A.V. & Smith, M.E. (2007) A 27Al MAS NMR study of a sol-gel produced alumina: Identification of the NMR parameters of the γ-Al2O3 transition alumina phase. Solid State Nuclear Magnetic Resonance, 31, 169173.Google Scholar
Padlyak, B.V., Wojtowicz, W., Adamiv, Y.T., Burak, Y.V. & Teslyuk, I.M. (2010) EPR spectroscopy of the Mn2+ and Cu + centres in lithium and potassium-lithium tetraborate glasses. Acta Physica Polonica A, 117, 122125.Google Scholar
Petra, L., Billik, P. & Komadel, P. (2015) Preparation and characterization of hybrid materials consisting of high-energy ground montmorillonite and α-amino acids. Applied Clay Science, 115, 174178.Google Scholar
Ptáček, P., Opravil, T., Šoukal, F., Havlica, J., Másilko, J. & Wasserbauer, J. (2013) Preparation of dehydroxylated and delaminated talc: Meta-talc. Ceramics International, 39, 90559061.Google Scholar
Ramadan, A.R., Esawi, A.M.K. & Gawad, A.A. (2010) Effect of ball milling on the structure of Na+-montmorillonite and organo-montmorillonite (Cloisite 30B). Applied Clay Science, 47, 196202.Google Scholar
Reddy, S.L., Frost, R.L., Sowjanya, G., Reddy, N.C.G., Reddy, G.S. & Reddy, B.J. (2008) EPR, UV-visible, and near-infrared spectroscopic characterization of dolomite. Advances in Condensed Matter Physics, 1–8.Google Scholar
Sanchez-Soto, P.J., Wiewiòra, A., Avilés, M.A., Justo, A., Pérez-Maqueda, L.A., Pérez-Rodriguez, J.L. & Bylina, P. (1997) Talc from Puebla de Lillo, Spain. II. Effect of dry grinding on particle size and shape. Applied Clay Science, 12, 297312.CrossRefGoogle Scholar
Siqueira, R.E., Andrade, M.M., Valezi, D.F., Carneir, C.E.A., Pinese, J.P.P., Costa, A.C.S., Zaia, D.A.M., Ralisch, R., Pontuschka, W.M., Guedes, C.L.B. & Mauro, E. (2011) EPR, FT-IR and XRD investigation of soils from Paraná, Brazil. Applied Clay Science, 53, 4247.CrossRefGoogle Scholar
Solihin, , Zhang, Q.W., Tongamp, W. & Saito, F. (2010) Mechanochemical route for synthesizing KMgPO4 and NH4MgPO4 for application as slow release fertilizers. Industrial & Engineering Chemistry Research, 49, 22132216.Google Scholar
Solihin, , Zhang, Q.W., Tongamp, W. & Saito, F. (2011) Mechanochemical synthesis of kaolin-KH2PO4 and kaolin-NH4H2PO4 complexes for application as slow release fertilizer. Powder Technology, 212, 354358.CrossRefGoogle Scholar
Vizcayno, C., Gutiérrez, R.M., Castello, R., Rodriguez, E. & Guerrero, C.E. (2010) Pozzolan obtained by mechanochemical and thermal treatments of kaolin. Applied Clay Science, 49, 405413.Google Scholar
Vyalikh, A., Massiot, D. & Scheler, U. (2009) Structural characterisation of aluminium layered double hydroxides by 27Al solid-state NMR. Solid State Nuclear Magnetic Resonance, 36, 1923.CrossRefGoogle Scholar
Zhang, Q.W., Solihin, & Saito, F. (2009) Mechanochemical synthesis of slow-release fertilizers through incorporation of alumina composition into potassium/ammonium phosphates. Journal of the American Ceramic Society, 92, 30703073.Google Scholar