Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T07:59:24.384Z Has data issue: false hasContentIssue false

A method of extending magnetic birefringence particle sizing into the sub-micron range

Published online by Cambridge University Press:  09 July 2018

S. R. Wilson
Affiliation:
School of Electrical Electronic and Information Engineering, South Bank University, London SE1 0AA, UK
P. J. Ridler
Affiliation:
School of Electrical Electronic and Information Engineering, South Bank University, London SE1 0AA, UK
B. R. Jennings
Affiliation:
JJ Thompson Physical Laboratory, Department of Physics, The University of Reading, Reading RG6 6AF UK

Extract

Both magnetic and electric fields have been used to induce optical birefringence in colloidal suspen- sions. These have formed the bases of fast methods for measuring particle sizes and their distributions (Mekshenkov, 1965; Tsvetkov et al., 1975; O'Konski, 1976; Maret & Dransfeld, 1977; Stoylov, 1991; Jennings & Stoylov, 1992; Trusov & Vojtylov, 1993). Whereas the majority of studies have related to the electric-field procedure, we recently reported a magneto-optic procedure suitable for sizing magnetic particles (Wilson et al., 1996). By increasing the viscosity of the suspensions, we are now able to extend the size range down into the sub-micron region with relative ease. This note reports magnetic birefringence data for a montmorillonite sample and justifies the technique via supplementary data on vermiculite of greater size range.

Type
Notes
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benoit, H. (1951) Contribution a l'étude de effet Kerr présenté par les solutions diluées de macromolécules rigide. Ann. Phys. 6, 561609.CrossRefGoogle Scholar
Jennings, B.R. & Stoylov, S.P. (1992) Colloids and Molecular Electro-Optics. Institute of Physics, Bristol, UK.Google Scholar
Maret, G. & Dransfeld K (1977) Macromolecules and membranes in high magnetic fields. Physica. 86-88B, 1077-1083.Google Scholar
Mekshenkov, M.I. (1965) Study of the structure and conformation of (calf thymus) DNA by the method of double refraction in a magnetic field. Bioflzika. 10, 747754.Google Scholar
O'Konski, C.T. (1976) Molecular Electro-optics. Marcel Dekker, New York, USA.Google Scholar
Perrin, F. (1934) Movement brownien d'un ellipsoïde (I). Dispersion diélectrique pour des molécules ellipsoïdales. J. Phys. Rad. 5, 497511.CrossRefGoogle Scholar
Stoylov, S.P. (1991) Colloid Electro-optics: Theory, Techniques, Applications. Academic Press, London. Trusov, A.A. & Vojtylov, V.V. (1993) Electrooptics & Conductometry of Polydisperse systems. CRC Press, Florida, USA.Google Scholar
Tsvetkov, V.N., Kudryavtsev, G.I., Rumtsev, E.I., Nikolaev, V.A., Kalmykova, V.D. & Volokhina, A.V. (1975) Magnetic double refraction in poly- (para-benzamide) solutions. Dokl. Akad. Nau. SSSR, 224, 398401.Google Scholar
Wilson, S.R, Ridler PJ. & Jennings, B.R. (1996) Magnetic birefringence particle size distribution. J. Phys. D. 29, 885888.CrossRefGoogle Scholar
Wilson, S.R, Ridler PJ. & Jennings, B.R. (1997) A simple apparatus for the measurement of the Cotton- Mouton effect in particulate suspensions. IEEE Trans. Magn. 33, 43494358.CrossRefGoogle Scholar