Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T05:54:26.742Z Has data issue: false hasContentIssue false

A mineralogical identification of a Tunisian clayey soil and fabric changes during wetting

Published online by Cambridge University Press:  09 July 2018

H. Souli*
Affiliation:
Laboratoire de Tribologie et Dynamique des Systèmes, CNRS UMR 5513 & Ecole Nationale des Ingénieurs de Saint-Etienne, 58 rue Jean Parot 42023 Saint Etienne Cedex 02, France
J.-M. Fleureau
Affiliation:
Laboratoire de Mécanique (Sols, Structures et Matériaux), CNRS UMR 8579 & Ecole Centrale Paris, Grande voie des vignes, 92295 Châtenay-Malabry, France
M. Trabelsi Ayadi
Affiliation:
Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement, Faculté des Sciences de Bizerte, Tunisia
N. Kbir-Ariguib
Affiliation:
Institut Supérieur de Recherche Scientifique et Technologique, Hammam-Lif, Tunisia

Abstract

A clayey soil from southern Tunisia has been studied in order to assess its possible use as an anti-pollution barrier. The soil has been characterized from both geotechnical and physicochemical points of view. The physicochemical characterization was carried out using X-ray diffraction, thermogravimetric and differential thermal analyses, specific surface area and cation exchange capacity measurements. Hydration tests were carried out using oedometers to determine the swelling behaviour of compacted specimens under different stress conditions. The large swelling pressure (420 kPa) is in agreement with the mainly smectitic character of the soil highlighted by the physicochemical tests. The changes in the fabric of the soil and in its porosity after the hydration tests were investigated using the same physicochemical methods, and related to the macroscopic hydro-mechanical properties. X-ray diffraction and mercury intrusion measurements show that there are changes in the interlayer spacing, particle size and inter-aggregate pore distribution. Comparing the properties of the soil with the Belgian guidelines for the construction of anti-pollution barriers showed that the material was suitable for that use.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Mukhtar, M., Belanteur, N., Tessier, D. & Vanapalli, S.K. (1996) The fabric of a clay soil under controlled mechanical and hydraulic stress states. Applied Clay Science, 11, 99115.CrossRefGoogle Scholar
Al-Mukhtar, M., Qi, Y., Alcover, J.-F., Conard, J. & Bergaya, F. (2000) Hydromechanical effects on the water-Na-smectite system. Applied Clay Science, 35, 537544.Google Scholar
Avsar, E., Ulusay, R. & Erguler, Z.A. (2005) Swelling properties of Ankara (Turkey) clay with carbonate concretions. Environmental and Engineering Geoscience, 11, 7393.Google Scholar
Barden, L. & Sides, G.R. (1970) Engineering behavior and structure of compacted clays. Journal of Soil Mechanics and Foundation Analysis, 96, 11711200.Google Scholar
Ben Rhaiem, H., Tessier, D. & Pons, C.H. (1986) Comportement hydrique et évolution structurale au cours d'un cycle de dessiccation-humectation. Partie I: Cas des montmorillonites calciques. Clay Minerals, 21, 919.Google Scholar
Bergaya, F. & Vayer, M. (1997) CEC of clays. Measurement by adsorption of a copper ethylenediamine complex. Applied Clay Science, 12, 275280.Google Scholar
Borchardt, G.A. (1977) Montmorillonite and other smectite mineral. Pp. 293330 in : Minerals in Soil Environments (Dixon, J.B., Weed, S.B., Kittrick, J.A., Milford, M.H. & White, J.L., editors). Soil Science Society of America Journal, Madison, Wisconsin, USA.Google Scholar
Brown, G. & Brindley, G.W. (1980) X-ray procedures for clay mineral identification. Pp. 305360 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogical Society, London.Google Scholar
Caillère, S., Henin, S. & Rautureau, M. (1982) Mineralogie des Argiles. Tomes 1 & 2, Masson, Paris, France.Google Scholar
Chen, F.H. (1988) Foundations on Expansive Soils. Developments in Geotechnical Engineering, 54. Elsevier Publishing Co., Amsterdam, The Netherlands, 464 pp.Google Scholar
Chu, T.Y. & Mou, C.H. (1973) Volume change characteristics of expansive soils determined by controlled-suction tests. Pp. 177185 in. Proceedings of the 3rd International Conference on Expansive Soils, 1. Haifa, Israel.Google Scholar
Dakshanamurphy, V. & Raman, V. (1973) A simple method of identifying an expansive soil. Soils and Foundations, 13, 97104.Google Scholar
Guillot, X., Bergaya, F., Fleureau, J.-M. & Al-Mukhtar, M. (2001) Influence of stresses and suction on volume change behavior and microscopic properties of a Casmectite. Pp. 6977 in: Proceedings of the International Symposium on Suction, Swelling, Permeability and Structure of Clays. Shizuoka, Japan.Google Scholar
Guillot, X., Al-Mukhtar, M., Fleureau, J.-M. & Bergaya, F. (2002) Free and linked water in compacted clay using thermogravimetric analysis. Pp. 265270 in. Proceedings of the 3rd International Conference on Unsaturated Soils, 1 (Juca, J.F.T., de Campos, T.M.P. & Marinho, F.A.M. editors), Recife, Brazil.Google Scholar
Marcoen, J.M., Tessier, D., Thorez, J., Monjoie, A. & Schroeder Ch. (2000) Manuel relatif aux matieres naturelles pour barrieres argileuses ouvragees pour C.E.T. (centres d'enfouissement technique) et réhabilitation de dépotoirs en Region Wallonne. Version 1, 14 pp.Google Scholar
Mauguin, C. (1928) Etude des micas au moyen des RX. Bulletin de la Société Française de Mineralogie, 51, 285332 Google Scholar
Philipponnat, G. (1991) Retrait-gonflement des argiles, proposition de methodologie. Revue Française de Geotechnique, 57, 522.Google Scholar
Qi, Y., Al Mukhtar, M., Alcover, J.F. & Bergaya, F. (1996) Coupling analysis of macroscopic and microscopic behaviour in highly consolidated Na-laponite clays. Applied Clay Science, 11, 185197.CrossRefGoogle Scholar
Quirk, J.-P., Murray, R.S. (1999) Appraisal of the ethylene glycol monoethyl ether method for measuring hydratable surface area of clays and soils. Soil Science Society of America Journal, 63, 839849.Google Scholar
Reynolds, R.C. Jr. & Hower, J. (1970) The nature of interlaying in the mixed layers illite-montmorillonite. Clays and Clay Minerals, 18, 2536.CrossRefGoogle Scholar
Rimmer, D.L. & Greenland, D.J. (1976) Effect of calcium carbonate on the swelling behaviour of a soil clay. European Journal of Soil Science, 27, 129139.Google Scholar
Sala, G.H. & Tessier, D. (1993) Importance de l'état énergétique de l'eau sur 1'aptitude au tassement de matériaux argileux non saturés. Compte-Rendus de l'Académie des Sciences, 316, 231236.Google Scholar
Seed, B., Woodward, R.J. & Lundgren, R. (1962) Prediction of swelling potential for compacted clays. Journal of the Soil Mechanics and Foundations Division, Proceeding of the American Society of Civil Engineers, 88, SM3, 53-87.Google Scholar
Sridharan, N., Rao, A.S. & Sivapullaiah, P.V. (1986) Swelling pressures of clays. Geotechnical Testing Journal, 1, 2433.Google Scholar
Standard NF P 94-057 (1992) Sols: Reconnaissance et Essais — Analyse granulométriques des sols — Méthode par sédimentation. May, AFNOR, 17 pp., Paris, France.Google Scholar
Standard NF P 94-051 (1993) Sols: Reconnaissance et Essais — Détermination des limites d'Atterberg — Limite de liquidité à la coupelle — Limite de plasticité au rouleau. March, AFNOR, 15 pp., Paris, France.Google Scholar
Standard XP P 94-091 (1995) Sols: Reconnaissance et Essais—Essais de gonflement à l'œdomètre — Détermination des déformations par chargement de plusieurs éprouvettes. December, AFNOR, 13 pp., Paris, France.Google Scholar
Standard NF P 94-048 (2003) Sols: Reconnaissance et Essais — Determination de la teneur en calcite — Methode du calcimetre. 2nd ed. January, AFNOR, 11 pp, Paris, France.Google Scholar
Standard ISO 17313 (2004) Qualité du sol. Détermination de la conductivité hydraulique de matériaux poreux saturés à l'aide d'un perméamètre à paroi flexible. July, AFNOR, 22 pp., Paris, France.Google Scholar
Tessier, D. & Berrier, J. (1979) Utilisation de la microscopie électronique à balayage dans l'etude des sols, observations de sols humides soumis à différents pF. Science du sol — Bulletin de I'A.F.E.S., 1, 6782.Google Scholar
Tessier, D., Lajudie, A. & Petit, J.C. (1992) Relation between the macroscopic behaviour of clays and their microstructural properties. Applied Geochemistry, 1, 151161.Google Scholar
Touret, Q., Pons, C.H., Tessier, D. & Tardy, Y. (1990) Etude de la répartition de l'eau dans des argiles saturées aux fortes teneurs en eau. Clay Minerals, 25, 217233.Google Scholar
Vasseur, G., Djéran-Maigre, I., Grunberger, D., Rousset, G., Tessier, D. & Velde, B. (1995) Evolution of structural and physical parameters of clays during experimental compaction. Marine and Petroleum Geology, 12, 941954.Google Scholar