Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T09:37:36.187Z Has data issue: false hasContentIssue false

Modelling water uptake in highly compacted bentonite in environmental sealing barriers

Published online by Cambridge University Press:  09 July 2018

J. Gattermann
Affiliation:
Ed. Züblin AG, D-70567 Stuttgart
W. Wittke
Affiliation:
WBI, Consulting Engineers for Foundation Engineering and Constructionin Rock Ltd., D-52072 AachenGermany
C. Erichsen
Affiliation:
WBI, Consulting Engineers for Foundation Engineering and Constructionin Rock Ltd., D-52072 AachenGermany

Abstract

Plans to close a German radioactive waste repository in rock salt include as one alternative the construction of a ‘Cross Section Closure (CSC)’ sealing barrier. The proposed material for the sealing barrier is highly compacted bentonite. To investigate the swelling behaviour of a highly compacted bentonite, a large number of laboratory tests were performed. In addition, large scale model tests were carried out to demonstrate the development of a nearly homogeneous and isotropic swelling pressure. The results of the large scale model tests were interpreted numerically based on the models for stress-strain behaviour and water uptake which are implemented in the finite element computer codes FEST03 and HYDOPO. The investigations show good agreement between the results of the model tests and the corresponding analyses and show that the theoretical models are capable of describing the behaviour of sealing structures based on highly compacted bentonite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biot, M.A. (1941) General theory of three dimensional consolidation. J. Appl. Phys. 12.Google Scholar
Börgesson, L., Hökmark, H. & Karnland, O. (1988) Rheological properties of sodium smectite clay. Swedish Geological Co., Lund, Sweden.Google Scholar
Börgesson, L., Pusch, R. & Ramquist, G. (1987) Final report of the borehole, shaft, and tunnel sealing test Volume I III. Technical Report 87-25, 87-26, 87- 27, Nagra, Baden, Switzerland.Google Scholar
Brenner, R.P. (1988) Bo hrloc hvers iege lung : Materia leigen schaft en von hochve rdicht eten Bentoniten mit Eignungsbeurteilung. Technischer Bericht 88-04, Nagra, Baden, Switzerland.Google Scholar
Bucher, F. & Müller-Vonmoos, M. (1987) Bentonit als technische Barriere bei der Endlagerung hochradioaktiver Abfälle. Mitteilungen des IGB der ETH Zürich, 133, 51–64.Google Scholar
Bucher, F. & Spiegel, U. (1984) Quelldruck von hochverdichteten Bentoniten. Technischer Bericht 84-18, Nagra, Baden, Switzerland.Google Scholar
Bucher, F., Jeger, P., Kahr, G. & Lehner, J. (1982) Herstellung und Homogenität hochverdichteter Bentonitproben. Technischer Bericht 82-05, Nagra, Baden, Switzerland.Google Scholar
Dials, G.E. (1997) Opening the United States First Nuclear Repository. Felsbau, 15, Nr. 6.Google Scholar
Erichsen, C. (1997) Grundwassermodell für räumliche, instationäre Strömungen in doppelt porösen Medien. Pp. 161–172 Deponien und Altlasten (Wittke, W., editor). Balkema, Rotterdam, The Netherlands.Google Scholar
Gattermann, J. (1998) Theorie und Modellversuch für ein Abdichtungsbauwerk aus hochverdichteten Bentonitformsteinen. Geotechnik in Forschung und Praxis, WBI-Print 2, (Wittke, W., editor) Verlag Glückauf, Essen, Germany.Google Scholar
Grob, H. (1972) Schwelldruck im Belchentunnel. Pp. 99–1190 in Proc. Int. Symp. on Underground Openings, Luzern.Google Scholar
Huertas, F. & Santiago, J.L. (1997) The Febex Projekt General Overview. Proc. of the MRS: Scientific Basis for Nuclear Waste Management XXI, Davos, 343–349.Google Scholar
Johannesson, L.-E., Börgesson, L. & Sandén, T. (1995) Compaction of bentonite blocks, Development of technique for industrial production of blocks which are manageable by man. SKB/KBS Technical Report 95-19, Lund, Sweden.Google Scholar
Kahr, G. & Madsen, F.T. (1995) Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Appl. Clay. Sci. 9, 327–336.Google Scholar
Kiehl, J.R. (1990) Ein Dreidimensionales Quellgesetz und seine Anwendung auf den Felshohlraumbau. Pp. 185–207 in: 9 Nationales Felsmechanik Symposium der DGGT, Sonderheft der Zeitschrift Geotechnik, Aachen, Germany.Google Scholar
Madsen, F. & Kahr, G. (1993) Diffusion of Ions in Compacted Bentonite. Proc. of the International Conference on Nuclear Waste Management and Environmental Remediation, Prague.Google Scholar
McKinley, I., Kickmaier, W., del Olmo, C. & Huertas, F. (1996) Das Projekt FEBEX: Die technischen Barrieren eines HAA-Endlagers im 1:1-Versuch. Bulletin der Nagra, 27, Wettingen, Switzerland.Google Scholar
Müller-Vonmoos, M., Bucher, M., Kahr, G., Madsen, F. & Mayor, P.A. (1991) Wechse llager ungen und Quellverhalten von Kalium-Bentoniten. Technischer Bericht 91-13, Nagra, Baden, Switzerland.Google Scholar
Perzyna, P. (1966) Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377.Google Scholar
Petersen, E. & Kelkar, S. (1983) Laboratory tests to determine hydraulic and thermal properties of bentonite-based backfill materials. Sandia Report, Sand-82.Google Scholar
Pregl, O., Fuchs, M., Müller, H., Petschl, G., Riedmüller, G. & Schwaighofer, B. (1980) Dreiaxiale Schwellversuche an Tongesteinen. Geotechnik, 1, 1–7.Google Scholar
Pusch, R. (1980) Water uptake, migration and swelling characteristics of unsaturated and saturated, highly compacted bentonite. Division of Soil Mechanics, University of Lulea, Sweden.Google Scholar
Pusch, R. (1983) Use of clays as buffers in radioactive repositories. Division of Soil Mechanics, University of Lulea, Sweden.Google Scholar
Pusch, R. (1994) Waste Disposal in Rock. Elsevier Science, B.V., Amsterdam, The Netherlands.Google Scholar
Pusch, R. & Börgesson, L. (1985) Final report of the buffer mass test. Vol. II: Test results. SKB-SP-TR- 85-12.Google Scholar
Pusch, R., Börgesson, L. & Nielsson, J. (1982) Buffer mass test buffer materials. SKBF/KBS Technical Report 82-06.Google Scholar
Pusch, R., Karnland, O. & Hökmark, H. (1990) GMM A general microstructural model for quantitative studies of smectite clays. SKB Technical Report 90-43.Google Scholar
Taylor, D.W. (1958) Fundamentals of Soil Mechanics. John Wiley & Sons, New York.Google Scholar
Villar, M.V. (1995) Thermo-hydro-mechanical characterization of the Spanish Reference clay material for engineered barrier for granite and clay HLW repository: Laboratory and small mock up testing. ENRESA, Publication Technica 03/95.Google Scholar
Wittke, W. (1990) Rock Mechanics, Theory and Applications with case Histories. Springer Verlag, Berlin.Google Scholar
Wittke, W. (1996) Abdichtung von Strecken im Endlager Mor sleben mit hoch verd ichtet em Bentonit. Geotechnik, 4, 304–311.Google Scholar
Wittke, W. (2000) Stability Analysis for Tunnels, Fundamentals. Geot echnic al Enginee ring in Research and Practice, WBI-PRINT 4. Verlag Glückauf, Essen, Germany.Google Scholar
Wittke, W., Schmitt, D. & Gattermann, J. (1998) Verschli eûkonzepte für Untertagedeponien Entwurf und geotechnische Nachweise. Geotechnik, 3, 212–216.Google Scholar
Wittke-Gattermann, P. (1998) Verfahren zur Berechnung von Tunne ls in que llfähigem Gebirge und Kal ibrierung an einem Versuchsbauwerk. Geotechnik in Forschung und Praxis, WBI-Print 1. Verlag Glückauf, Essen, Germany.Google Scholar