Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-20T10:47:03.291Z Has data issue: false hasContentIssue false

Mössbauer spectroscopy of clays, soils and their mineral constituents

Published online by Cambridge University Press:  09 July 2018

E. Murad*
Affiliation:
Departamento de Química – ICEx, Universidade Federal de Minas Gerais, Campus–Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
*

Abstract

Mössbauer spectroscopy is the technique of recoil-free resonant emission and absorption of gamma rays. It has the advantage of being oblivious to all elements except the one under survey. In the case of materials formed on the earth’s surface, such as soils and clays, the only propitious element is Fe. Iron is the fourth most abundant element in the Earth’s crust, it is essential for life, and almost all environmental materials contain at least some Fe. It is also fortuitous that 57Fe Mössbauer spectroscopy is among the most straightforward to operate. 57Fe Mössbauer spectroscopy thus allows the characterization of iron speciation, and thereby of environmental conditions, over a wide range of concentrations, making it an extremely effective environmental probe.

Straightforward as it may seem, Mössbauer spectroscopy nevertheless has many pitfalls. Besides problems arising from the basic physics, complications can arise among other causes from imperfect crystallinity (small particle size), non-stoichiometry, interparticle effects and isomorphous substitutions.

In this paper a succinct review of the basic principles of Mössbauer spectroscopy is presented, followed by examples of Mössbauer spectra of minerals that are common constituents of clays and soils, and by more complex cases of soils, clays and fired clays.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1984) Classification and structures of the micas. Pp. 112 in. Micas. Reviews in Mineralogy, 13 (Bailey, S.W., editor). Mineralogical Society of America, Washington, D.C. Google Scholar
Bailey, S.W., Brindley, G.W., Fanning, D.S., Kodama, H. & Martin, R.T. (1984) Report of the Clay Minerals Society Nomenclature Committee for 1982 and 1983. Clays and Clay Minerals, 32, 239240.CrossRefGoogle Scholar
Bigham, J.M., Carlson, L. & Murad, E. (1994) Schwertmannite, a new iron oxyhydroxyj sulphate from Pyhasalmi, Finland, and other localities. Mineralogical Magazine, 58, 641648.Google Scholar
Bishop, J.L., Dyar, M.D., Lane, M.D. & Banfield, J.F. (2004) Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth. International Journal of Astrobiology, 3, 275285.CrossRefGoogle Scholar
De Grave, E. & Van Alboom, A. (1991) Evaluation of ferrous and ferric Mössbauer fractions. Physics and Chemistry of Minerals, 18, 337342.Google Scholar
De Grave, E. & Vandenberghe, R.E. (1986) 57Fe Mössbauer effect study of well-crystallized goethite (a-FeOOH). Hyperfine Interactions, 28, 643646.Google Scholar
Dyar, M.D., Schaefer, M.W., Sklute, E.C. & Bishop, J.L. (2008) Mössbauer spectroscopy of phyllosilicates: effects of fitting models on recoil-free fractions and redox ratios. Clay Minerals, 43, 333.Google Scholar
Gangas, N.H.J., van Wonterghem, J., Mørup, S. & Koch, C.J.W. (1985) Magnetic bridging in nontronite by intercalated iron. Journal of Physics C, 18, L1011-1015.Google Scholar
Guyodo, Y., Banerjee, S.K., Penn, R.L., Burleson, D., Berquo, T.S., Seda, T. & Solheid, P. (2006) Magnetic properties of synthetic six-line ferrihydrite nanoparticles. Physics of the Earth and Planetary Interiors, 154, 222233.Google Scholar
Hogg, C.S., Maiden, P.J. & Meads, R.E. (1975) Identification of iron-containing impurities in natural kaolinites using the Mössbauer effect. Mineralogical Magazine, 40, 8996.Google Scholar
Janot, C., Gibert, H. & Tobias, C. (1973) Caractérisation de kaolinites ferrifères par spectrométrie Mössbauer. Bulletin de la Societé française de Minéralogie et Cristallogaphie, 96, 281291.Google Scholar
Kistner, O.C. & Sunyar, A.W. (1960) Evidence for quadrupole interaction of Fe57m, and influence of chemical binding on nuclear gamma-ray energy. Physical Review Letters, 4, 413415.Google Scholar
Maiden, P.J. & Meads, R.E. (1967) Substitution by iron in kaolinite. Nature, 215, 844846.Google Scholar
Mössbauer, R.L. (1958a) Kernresonanzabsorption von Gammastrahlung in Ir191. Die Naturwissenschafien, 45, 538539 Google Scholar
Mössbauer, R.L. (1958b) Kernresonanzfluoreszenz von Gammastrahlung in Ir191. Zeitschrift für Physik, 151, 124143.Google Scholar
Mössbauer, R.L. (2000) The discovery of the Mössbauer effect. Hyperfine Interactions, 126, 112.Google Scholar
Murad, E. (1987) Mössbauer spectra of nontronites: structural implications and characterization of associated iron oxides. Zeitschrift für Pflanzenernáhrung und Bodenkunde, 150, 279285.CrossRefGoogle Scholar
Murad, E. (1988) Properties and behavior of iron oxides as determined by Mössbauer spectroscopy. Pp 309350 in: Iron in Soils and Clay Minerals (Stucki, J.W., Goodman, B.A. & Schwertmann, U., editors). Reidel, Dordrecht/Boston.Google Scholar
Murad, E. & Cashion, J. (2004) Mössbauer Spectroscopy of Environmental Materials and their Industrial Utilization. Kluwer Academic Publishers, Boston.CrossRefGoogle Scholar
Murad, E. & Johnston, J.H. (1987) Iron oxides and oxyhydroxides. Pp. 507582 in: Mössbauer Spectroscopy Applied to Inorganic Chemistry, 2 (Long, G.J., editor). Plenum, New York.Google Scholar
Murad, E. & Schwertmann, U. (1983) The influence of aluminium substitution and crystallinity on the Mössbauer spectra of goethite. Clay Minerals, 18, 301312.Google Scholar
Murad, E. & Wagner, U. (1991) Mössbauer spectra of kaolinite, halloysite and the firing products of kaolinite: new results and a reappraisal of published work. Neues Jahrbuch für Mineralogie, Abhandlungen, 162, 281309.Google Scholar
Murad, E. & Wagner, U. (1996) The thermal behaviour of an Fe-rich illite. Clay Minerals, 31, 4552.Google Scholar
Murad, E., Cashion, J.D. & Brown, L.J. (1990a) Magnetic ordering in Garfield nontronite under applied magnetic fields. Clay Minerals, 25, 261269.Google Scholar
Murad, E., Schwertmann, U. & Cashion, J.D. (1990b) Magnetic hyperfine fields in aluminous magnetites synthesized at ambient temperatures. Hyperfine Interactions, 54, 619622.CrossRefGoogle Scholar
Murad, E., Wagner, U., Wagner, F.E. & Häusler, W. (2002) The thermal reactions of montmorillonite: a Mössbauer study. Clay Minerals, 37, 583590.Google Scholar
Norrish, K. & Pickering, J.G. (1983) Clay minerals. Pp. 281308 in: Soils: An Australian Viewpoint. CSIRO Division of Soils, Melbourne, Australia.Google Scholar
Rieder, M., Cavazzini, G., D'yakonov, Y.S., Frank-Kamentskii, V.A., Gottardi, G., Guggenheim, S., Koval’, P.W., Miiller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. & Wones, D.R. (1988) Nomenclature of the micas. Clays and Clay Minerals, 46, 586595. Also. The Canadian Mineralogist, 36, 905-912.Google Scholar
Schwertmann, U., Murad, E. & Schulze, D.G. (1982a) Is there Holocene reddening (hematite formation) in soils of axeric temperate climates? Geoderma, 27, 209223.Google Scholar
Schwertmann, U., Schulze, D.G. & Murad, E. (1982b) Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction and Mössbauer spectroscopy. Soil Science Society of America Journal, 46, 869875.Google Scholar
Środoń, J. & Eberl, D.D. (1984) Illite. Pp. 495544 in: Micas. Reviews in Mineralogy, 13 (Bailey, S.W., editor). Mineralogical Society of America, Washington, D.C. Google Scholar
St.Pierre, T.G., Webb, J. & Butt, C.R.M. (1990) Laterite mineralization near Kalgoorlie, Western Australia: dating by Mössbauer spectroscopy. Hyperfine Interactions, 57, 22792294.Google Scholar
Wagner, U., Knorr, W., Forster, A., Murad, E., Salazar, R. & Wagner, F.E. (1988) Mössbauer study of illite associated with iron oxi-hydroxides. Hyperfine Interactions, 41, 855858.Google Scholar