Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T14:04:07.073Z Has data issue: false hasContentIssue false

Organo-bentonites with quaternary alkylammonium ions

Published online by Cambridge University Press:  09 July 2018

H. Favre
Affiliation:
Institut für anorganische Chemie der Universität Kiel, Olshausenstraβe 40, D-2300 Kiel, Germany
G. Lagaly
Affiliation:
Institut für anorganische Chemie der Universität Kiel, Olshausenstraβe 40, D-2300 Kiel, Germany

Abstract

Three bentonites, from Bavaria, Wyoming and Brazil, were separated into various fractions. The layer charge was determined by alkylammonium ion exchange and increases with particle size from 0·25 Eq/(Si, Al)4O10 (<0·06 µm) to 0·28 Eq/(Si, Al)4O10 (1–10 µm). The charge density corresponds to an interlayer cation density of 0·75–0·80 mEq/g silicate. Total amounts of 0·90–1·0 mEq of different surfactant cations (dimethyl dioctadecylammonium, trimethyl tetradecylammonium, alkylammonium ions) are bound per gram silicate. The difference between the total and the interlayer amount of surfactant ions decreases with increasing particle size. The amounts exceeding the interlayer CEC are bound at the edges. Tetramethylammonium (TM) ions restrict the interlayer adsorption of long-chain quaternary alkylammonium ions such as trimethyl tetradecylammonium (TMTD) ions, and only monolayers of flat-lying surfactants are formed. A ratio of TMTD and TM is attained which leads to densely packed monolayers of organic ions. The collapsing effect is smaller for tetraethylammonium ions so that considerable amounts of TMTD ions are adsorbed in bilayers. When bentonites are reacted with quaternary alkylammonium ions of technical quality some selectivity is observed according to particle size and layer charge. Smaller particles with lower charge density preferentially bind the longer chain compounds, whereas large particles with higher charge density select smaller sized surfactants.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrer, R.M., Papadopoulos, R. & Rees, L.V.C. (1967) Exchange of sodium in clinoptilolite by organic cations.J. Inorg. Nucl. Chem., 29, 2047–2063.CrossRefGoogle Scholar
Barker, R.M. & Kelsey, K.E. (1961) Thermodynamics of interlamellar complexes. I. Hydrocarbons in methylammonium montmorillonites. Trans. Farad. Soc., 57, 452–162.Google Scholar
Clementz, D.M. & Mortland, M.M. (1974) Properties of reduced charge montmorillonite: tetra-alkylammonium ion exchange forms. Clays Clay Miner., 22, 223–229.Google Scholar
Déќany, I., Szant6 F. & Nagy, L.G. (1986) Sorption and immersional wetting on day minerals having modified surface. J. Coll. Interf. Sci., 109, 376–384.Google Scholar
Granquist, W.T. & McAtee, J.L. (1963) The gelation of hydrocarbons by montmorillonite organic complexes. J. Coll. Sci., 18, 409420.CrossRefGoogle Scholar
Jones, T.R. (1983) The properties and uses of clays which swell in organic solvents. Clay Miner., 18, 399–410.CrossRefGoogle Scholar
Lagaly, G. & Weiss, A. (1971) Anordnung und Orientierung kationischer Tenside auf Silicatoberflachen. Teil IV Anordnung von n-Alkylammoniumionen bei niedrig geladenen Schichtsilicaten. Kolloid Z.Z. Polymere, 243, 48–55.Google Scholar
Lagaly, G. (1976) Kink-block and gauche-block structures of bimolecular films. Angew. Chem. Int. Ed. Engl., 15, 575586.Google Scholar
Lagaly, G. (1981) Characterization of clays by organic compounds. Clay Miner., 16, 1–21.CrossRefGoogle Scholar
Lagaly, G. (1982) Determination of layer charge heterogeneity in vermiculites. Clays Clay Miner., 30, 215–222.Google Scholar
Lagaly, G. & Fahn, R. (1983) Ton und Tonminerale. Pp. 311326 in: Ullman's Encyklopadie der technischen Chemie, 4. Auflage, Band 23.Google Scholar
Lagaly, G., Tributh, H., SanderH. & Craciun, C. (1985) Die KorngroBenverteilung von Bentoniten undihrEinluB auf rontgenographische und rheologische Eigenschaften. Keram. Z., 37, 75–79.Google Scholar
Lee, J.F., Mortland, M.M. & Boyd, St. A. (1989) Shape selective adsorption of aromatic molecules from water by tetramethylammonium-smectite. J. Chem. Soc. Faraday Trans., 1, 85, 29532962 CrossRefGoogle Scholar
Malla, P.B. & Douglas, L.A. (1987a) Identification of expanding layer silicates: layer charge V5. expansion properties. Proc. Int. Clay Conf. Denver,, 277283.Google Scholar
Malla, P.B. & Douglas, L.A. (1987b) Problems in identification of montmorillonite and beidellite. Clays Clay Miner., 35, 232–236.Google Scholar
McAtee, J.L. (1962) Cation exchange of organic compounds on montmorillonite in organic media. Clays Clay Miner., 9, 444–450.Google Scholar
McAtee, J.L. (1963) Organic cation exchange on montmorillonite as observed by ultraviolet analysis. Clays Clay Miner., 10, 53–162.Google Scholar
McAtee, J.L. & Robbins, R.C. (1980) Gas chromatographic separation of cresols by various quaternary ammonium substituted montmorillonites. Clays Clay Miner., 28, 61–64.Google Scholar
Samii, A.M. & Lagaly, G. (1987) Adsorption of nuclein bases on smectites. Proc. Int. Clay Conf. Denver,, 343351.Google Scholar
Slabaugh, W.H. & Vasofsky, R.W. (1975) Adsorption of xylene by organo-clays. Clays Clay Miner., 23, 458461. CrossRefGoogle Scholar
Street, G.B. & White, D. (1963) Adsorption by organo-clay derivatives. J. Appl. Chem., 13, 288–291.Google Scholar
Stul, M.S. & Mortier, W J. (1974) The heterogeneity of the charge density in montmorillonites. Clays Clay Miner., 22, 391–396.Google Scholar
Stul, M.S. & Uytterhoeven, J.B. (1983) Monotrimethylammoniumdodecane day–benzene, hexane vapor interactions. J. Coil. Interf. ScL, 91, 286–288.Google Scholar
Szántό, F. & Veres, S. (1963) Stability of organophilic bentonite suspensions in mixtures of apolar and polar liquids. Acta Physica Chemica, Szeged,nova series IX, 157167.Google Scholar
Szántό, F., Gilde, F. & Sipos, E. (1972) Sedimentation organophiler Bentonite. Kolloid-Z.Z. Polymere,, 250, 683–688.Google Scholar
Taramasso, M. & Veniale, F. (1969) Gas-chromatographic investigations on dimethyldioctadecyl ammonium derivatives of different clay minerals. Contr. Mineral. Petrol., 21, 53–62.Google Scholar
Taramasso, M. (1971) Adsorbents for gas-solid chromatography prepared by epitacial modification of clay minerals with quaternary ammonium ions. J. Chromatogr., 58, 31–38.CrossRefGoogle Scholar
Tributh, H. & Lagaly, G. (1986) Aufbereitung und ldentifizierung von Boden- und Lagerstattentonen. II. KorngroBenanalyse und Gewinnung von Tonsubfraktionen. GIT Fachzeitschrift fiir das Laboratorium,, 30, 771–776.Google Scholar
Vasofsky, R.W. & Slabaugh, W.H. (1976) Dimethyldiocatadecyl-ammonium clay xylene vapor interactions. J, Coll. Interf. Sci., 55, 342–357.CrossRefGoogle Scholar
Vold, R.R. & Phansalkar, V.K. (1962) Dispersion of alkylammonium montmorillonites in organic liquids. J. Coll. Sci., 17, 589–600.Google Scholar
Westfehling, R. (1987) Vber den Ladungsnullpunkt von Tonmineralen.Thesis, Univ. Kiel, Germany.Google Scholar