Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T20:21:09.212Z Has data issue: false hasContentIssue false

Origin of kaolin deposits in the ‘Los Menucos’ area, Río Negro Province, Argentina

Published online by Cambridge University Press:  09 July 2018

S. A. Marfil*
Affiliation:
Departamento de Geología, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina Investigador Independiente Comisión de Investigaciones Científicas de la Provincia de Bs. As., Argentina
P. J. Maiza
Affiliation:
Departamento de Geología, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina Investigador Principal CONICET
E. Cardellach
Affiliation:
Departamento de Geología, Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
M. Corbella
Affiliation:
Departamento de Geología, Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
*

Abstract

Kaolinite deposits, hosted by rhyolitic tuffs, are found in the SE of the ‘Los Menucos’ area (Province of Rio Negro, Argentina). The most representative examples are from the Blanquita and Equivocada mines. To discover the origin of these deposits, a mineralogical, geochemical (major and trace element) and stable isotope study (O and H) of kaolinite was carried out. Mineralogically, Blanquita mine is characterized by the presence of dickite, kaolinite, alunite and pyrophyllite, whereas in Equivocada mine, kaolinite is accompanied by dickite and traces of alunite (without pyrophyllite). The trace element contents and ratios of kaolin samples (P vs. S, Zr vs. Ti, (Cr + Nb) vs. (Ti + Fe), and (Ce + Y + La) vs. (Ba + Sr)) suggest that they formed from the hydrothermal alteration of the enclosing rhyolites although a possible contribution of kaolinite from residual processes cannot be discounted. δ18O values of kaolinite range from +4.8 to +10.3‰, and δD varies from −88 to −116‰. The presence of pyrophyllite in Blanquita mine suggests temperatures of formation >350°C. The calculated isotopic composition of the fluid in equilibrium with kaolinite at 350°C varies from +3.6 to +9.2‰ for O and from −74 to −103‰ for H. These values are compatible with fluids of magmatic origin or with fluids of surficial origin isotopically equilibrated with a rhyolitic magma at high temperatures. The isotope composition of kaolinite from the Blanquita and Equivocada mines is clearly different from kaolinite of residual origin from deposits in the Chubut and Santa Cruz provinces. The isotopic signature has proved to be a useful tool in discriminating between different genetic processes in the formation of kaolin deposits.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clayton, R.N. & Mayeda, T.K. (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta. 27, 43–52.Google Scholar
Cravero, F. & Dominguez, E. (1999) Origin of sedimentary kaolin in the Neuquen basin, Argentina as determined by oxygen isotopes. Periodico di Mineralogia. 68, 213222.Google Scholar
Cravero, F., Dominguez, E. & Murray, H. (1991) Valores δO18 y δD en caolinitas indicadoras de un clima templado-húmedo para el Jurásico superior-Cretácico inferior de la Patagonia. Revista de la Asociacion Geológica Argentina. XLVI (1-2), 20-25.Google Scholar
Cravero, F., Domínguez, E. & Iglesias, C. (2001) Genesis and applications of the Cerro Rubio kaolin deposit, Patagonia (Argentina). Applied Clay Science. 18, 157172.CrossRefGoogle Scholar
Dill, H., Bosse, R., Henning, H. & Fricke, A. (1997) Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt the Central Andes of northwestern Peru. Mineralia Deposita. 32, 149163.CrossRefGoogle Scholar
Gilg, H. & Sheppard, S. (1996) Hydrogen isotopic fractionation between kaolinite and water revisite. Geochimica et Cosmochimica Acta. 60, 529–533.Google Scholar
Hayase, K. & Maiza, P. (1970) Génesis del yacimiento de caolín ‘Mina Equivocada’ Los Menucos, Prov. de Rio Negro, República Argentina. Revista de la Asociación Argentina de Mineralogía Petrología y Sedimentología I. (1-2), 33-34.Google Scholar
Hayase, K. & Manera, T. (1973) A statistical analysis of experimental data on filling temperature of fluid inclusions in fluorite from fluorite deposits of Patagonia Argentina. Mining Geology, Japan. 23, 12.Google Scholar
Hanson, R.F., Zamora, R. & Keller, W.D. (1981) Nacrite, dickite and kaolinite in one deposit in México. Clays and Clay Minerals. 29, 451453.Google Scholar
Harris, C., Compton, J.S. & Bevington, S. (1999) Oxygen and hydrogen isotope composition of kaolinite deposits, Cape Peninsula, South Africa: low temperature, meteoric origin. Economic Geology. 94, 13531366.Google Scholar
Jenkin, G.R.T. (1988) Stable isotope studies in the Caledonides in SW Connemara, Ireland. PhD thesis, University of Glasgow, UK.Google Scholar
Labudia, C. & Hayase, K. (1975) Relaciones entre las rocas y las mineralizaciones de Pb-Cu-Zn, fluorita y caolin de los alrededores de Los Menucos, Prov. de Rio Negro, Argentina. Sexto Congreso Geologico Argentino, Adas, Bahía Blanca. in, pp. 69-80.Google Scholar
Maiza, P. (1972) Los yacimientos de caolin originados por la actividad hidrotermal en los principales distritos caoliniferos de la Patagonia, Republica Argentina. Tesis Doctoral, Universidad Nacional del Sur, Argentina.Google Scholar
Maiza, P. & Mas, G. (1981) Presencia de natroalunita en Mina Equivocada, Rio Negro. Su significado. VIII Congreso Geologico Argentino, San Luis, Actas, TV. pp. 285-292.Google Scholar
Maiza, P.J., Pieroni, D. & Marfil, S.A. (2003) Geochemistry of the hydrothermal kaolins in the SE area of Los Menucos. Prov. de Rio Negro. A Clay Odyssey – Proceedings of the 12th International Clay Conference, Argentina, 2001. Elsevier, Amsterdam, pp. 123-130.Google Scholar
Malvicini, L. & Vallés, J.M. (1984) Metalogenésis. Capitulo III-5. Geología y recursos naturales de la Provincia de Rio Negro. Relatorio del IX Congreso Geológico Argentino, San Carlos de Bariloche, Río Negro, Argentina. pp. 649–662.Google Scholar
Manera, T. (1972) La mineralización de los yacimientos de fluorita de la Provincia de Río Negro. Tesis Doctoral, Universidad Nacional del Sur, Bahia Blanca, Argentina.Google Scholar
Marfil, S.A., Pieroni, D. & Maiza, P.J. (2000) Dickita y alunita en mina Blanquita, Los Menucos (Provincia de Río Negro). V Congreso de Mineralogía y Metalogenia. MINMET 2000, La Plata, Argentina. pp. 281-286.Google Scholar
Murray, H.H. (1988) Kaolin minerals: their genesis and occurrences. Pp. 67-89 in: Hydrous Phyllosilicates (Exclusive of Micas. (S.W. Bailey, editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.Google Scholar
Murray, H. & Janssen, J. (1984) Oxygen isotopes - indicators of kaolin genesis. Proceedings of the 27th International Geological Congress. 15, 287–303.Google Scholar
Savin, S.M. & Lee, S. (1988) Isotopic studies of phyllosilicates. Pp. 189-223 in: Hydrous Phyllosilicates (Exclusive of Micas. (S.W. Bailey, editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.Google Scholar
Sheppard, S.M.F. (1986) Characterization and isotopic variations in natural waters. Stable Isotopes in High- Temperature Geological Processe. (J.W. Valley, H.P. Taylor, Jr. & J.R. O'Neil, editors). Reviews in Mineralogy, 16, Mineralogical Society of America, Washington, D.C.Google Scholar
Sheppard, S.M.F. & Gilg, H.A. (1996) Stable isotope geochemistry of clay minerals. Clay Minerals. 31, 124.CrossRefGoogle Scholar
Spear, F.S. (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Monograph 1, Mineralogy Society of America Memoir, Washington, D.C, 799 pp.Google Scholar
Vallés, J.M. (1975) Contributión a la metalogenésis de la Provincia de Río Negro. Actas del Sexto Congreso Geológico Argentino, Bahía Blanca, Argentina. pp. 179-200.Google Scholar