Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T14:39:07.072Z Has data issue: false hasContentIssue false

Oxidation of mudstone in a tunnel (Tournemire, France): consequences for the mineralogy and crystal chemistry of clay minerals

Published online by Cambridge University Press:  09 July 2018

D. Charpentier*
Affiliation:
CNRS-UMR 7566 G2R, Université Henri Poincaré, BP 239, 54506 Vandoeuvre les Nancy, France
R. Mosser-Ruck
Affiliation:
CNRS-UMR 7566 G2R, Université Henri Poincaré, BP 239, 54506 Vandoeuvre les Nancy, France
M. Cathelineau
Affiliation:
CNRS-UMR 7566 G2R, Université Henri Poincaré, BP 239, 54506 Vandoeuvre les Nancy, France
D. Guillaume
Affiliation:
CNRS-UMR 7566 G2R, Université Henri Poincaré, BP 239, 54506 Vandoeuvre les Nancy, France

Abstract

The excavation of a tunnel through a mudstone formation provides an opportunity to examine the effects of the modification of the physical and chemical environment on the rock. The mineralogical and chemical consequences of hydration-dehydration cycles and of oxidation have been evaluated in the case of the Toarcian mudstone formation at the Tournemire experimental site (France). Studies by X-ray diffraction and tansmission electron microscopy of both altered and preserved samples show that the introduction of air and condensed water causes the oxidation of pyrite and the subsequent generation of acid and sulphate-rich waters at the micron scale, in the local environment of pyrites. The fluid-clay particle interactions around the oxidized pyrites induce: (1) a statistical enrichment in Si of the I-S clay minerals; (2) an increase in the Fe(III)/Fe total ratio in some of the I-S particles; and (3) the dissolution of illite layers in mixed-layer I-S. These evolutions are consistent with the results of numerical modelling which reproduced the interaction between the clay particles and the acid water.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoudjit, H., Elsass, F., Righi, D. & Robert, M. (1996) Mica weathering in acidic soils by analytical electron microscopy. Clay Minerals, 31, 319–332.CrossRefGoogle Scholar
Bailey, L.K. & Peters, E. (1976) Decomposition of pyrite in acids by pressure leaching and anodization: the case for an electrochemical mechanism. Canadian Metallurgical Quarterly, 15, 333–344.Google Scholar
Barbreau, A. & Boisson, J.Y. (1993) Caractérisation d’une formation argileuse: synthèse des prinipaux résultats obtenus à partir du tunnel de Tournemire de Janvier 1992 à Juin 1993. CCE report n°1 EUR 15736 FR, ref. SERGD 93/22, France.Google Scholar
Bauer, A. & Berger, G. (1998) Kaolinite and smectite dissolution rate in high molar KOH solutions at 35°C and 80°C. Applied Geochemistry, 13, 905–916.Google Scholar
Blowes, D.W. & Jambor, J.L. (1990) The pore-water geochemistry and the mineralogy of the vadose zone of sulfide tailings, Waite Amulet, Quebec, Canada. Applied Geochemistry, 5, 327–346.CrossRefGoogle Scholar
Boisson, J.Y. (1996) Caractérisation d’une formation argileuse. Caractérisations hydrogéologiques in situ des argilites du tunnel de Tournemire. Rapport d’avancement n°4 du contrat CCE-CEA n°FI2WCT91-0115-Réf.SERGD96/011, France.Google Scholar
Bonin, B. (1998) Deep geological disposal in argillaceous formations: studies at the Tournemire test sit. Journal of Contaminant Hydrology, 35, 315–330.Google Scholar
Brookins, D.G. (1984) Geochemical Aspects of Radioactive Waste Disposal. Springer Verlag, New York.Google Scholar
Cathelineau, M., Guerci, A., Ahamdach, N. & Cuney, M. (1995) Smectite-goethite-Fe, U, Ca and Ba-sulfate assemblage resulting from bio-oxidation derived acid drainage in mine tailings: an analytical, experimental, and numerical approach. Pp. 647–649 in: Proceedings of the 3rd biennal SGA Meeting (Pasava, J., Kribek, B. & Zak, K., editors). Balkema, Rotterdam, The Netherlands.Google Scholar
Charpentier, D. (2001) Rôle de l’oxydation chimique et de l’acidification des eaux sur les propriétés mineralogiques et physico-chimiques de la formation argileuse de Tournemire. PhD thesis, Univ. Nancy I, France.Google Scholar
Charpentier, D., Cathelineau, M., Mosser-Ruck, R. & Bruno, G. (2001) Evolution minéralogique des argilites en zones sous-saturées oxydées : exemple des parois du tunnel de Tournemire (Aveyron, France). Comptes Rendus de l’Académie des Sciences, 332, 601–607.Google Scholar
De Windt, L., Cabrera, J. & Boisson, J.Y. (1998) Hydrochemistry in an indurated argillaceous formation (Tournemire tunnel site, France). Pp. 145–148 in: Water Rock Interaction Proceedings (Arehart, G.B. & Hulston, J.R., editors). Balkema, Rotterdam, The Netherlands.Google Scholar
Galán, E., Carretero, M.I. & Fernandez-Caliani, J.C. (1999) Effects of acid mine drainage on clay minerals suspended in the Tinto River (Rio Tinto, Spain). An experimental approach. Clay Minerals, 34, 99–108.Google Scholar
Garrels, R.M. & Thompson, M.E. (1960) Oxidation of pyrite by iron sulfate solutions. American Journal of Science, 258A, 57–67.Google Scholar
Gillot, F., Righi, D. & Elsass, F. (2000) Pedogenic smectites in podzols from central Finland: an analytical electron microscopy study. Clays and Clay Minerals, 48, 655–664.Google Scholar
Giraud, A., Thouvenin, G., Homand, F. & Didry, O. (1999) Modélisation poroélastique de la dessaturation autour de cavités profondes. Pp. 375–380 in: 9th International Congress on Rock Mechanics (Vouille, G. & Bérest, P., editors). Balkema, Rotterdam, The Netherlands.Google Scholar
Guillaume, D., Pironon, J. & Ghanbaja, J. (2001) Valence determination of iron in clays by electron energy loss spectroscopy. Berichte der Deutschen Mineralogischen Gesellshaft, Beih. z. European Journal of Mineralogy, 13, 70.Google Scholar
Harvey, C.O. (1943) Some notes on the calculation of molecular formulae for glauconite. American Mineralogist, 28, 541–543.Google Scholar
Helgeson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. American Journal of Science, 267, 724–804.CrossRefGoogle Scholar
Higgo, J.J.W. (1987) Clay as a barrier to radionuclide migration. Progress in Nuclear Energy, 19, 173–207.CrossRefGoogle Scholar
Holtzapffel, Y. (1985) Les minéraux argileux: Préparation, analyse diffractométrique et détermination. Société Géologique du Nord, 12, 136 pp.Google Scholar
Hower, J. & Mowatt, T.C. (1966) The mineralogy of illites and mixed layer illite-montmorillonites. American Mineralogist, 51, 825–857.Google Scholar
Huang, S.L., Speck, R.C. & Wang, Z. (1995) The temperature effect on swelling of shales under cyclic wetting and drying. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 32, 227–236.Google Scholar
Huertas, F.J., Caballero, E., Jimérez de Cisneros C, Huertas, F. & Linares, J. (2001) Kinetics of montmorillonite dissolution in granitic solution. Applied Geochemistry, 16, 397–407.Google Scholar
Lalieux, P., Thury, M. & Horseman, S. (1996) Radioactive waste disposal in argillaceous media. NEA Newsletter, 34-36.Google Scholar
Madsen, F.T. (1998) Clay mineralogical investigations related to nuclear waste disposal. Clay Minerals, 33, 109–129.CrossRefGoogle Scholar
Meunier, A. & Velde, B. (1989) Solid solutions in I/S mixed-layer minerals and illite. American Mineralogist, 24, 1106–1112.Google Scholar
Millot, G. (1964) Géologie des Argiles. Masson, Paris.Google Scholar
Mustin, C. (1992) Approche physico-chimique et modeélisation de l’oxydation bactérienne de la pyrite par Thiobacillus ferrooxidans: rôle déterminant de la phase minérale. PhD thesis, Université Nancy I, France.Google Scholar
Panin, V.V., Karavaiko, G.I. & Pol’kin, S.I. (1985) Mechanism and kinetics of bacterial oxidation of suphide minerals . Pp. 197–215 in: Biogeotechnology of Metals (Karavaiko, G.I. & Groudev, S.N., editors). UNEP Moscow, USSR.Google Scholar
Pusch, R. & Karnland, O. (1996) Physico/chemical stability of smectite clays. Engineering Geology, 41, 73–85.Google Scholar
Raz, U. & Peters, T. (1989) The effect of iron and magnesium on the stability of illite and smectite. Pp. 569–572 in: Water-Rock Interaction Proceedings (Miles, D.L., editor). Balkema, The Netherlands.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals Pp. 249–303 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogical Society, London.Google Scholar
Sévèque, J.L. (1986) Etude expérimentale de la dissolution des minéraux sulfurés en milieu oxydant: application àla prospection minière. PhD thesis, Université de Paris VI, France.Google Scholar
Teveldal, S., Jorgensen, P. & Stuanes, A.O. (1990) Longterm weathering of silicates in a sandy soil at Nordmoen, southern Norway. Clay Minerals, 25, 447–465.Google Scholar
Velde, B. (1985) Clay Minerals. A Physico-chemical Explanation of their Occurrence. Elsevier, Amsterdam, Oxford, New York, Tokyo.Google Scholar
Velde, B. & Church, T. (1999) Rapid clay transformations in Delaware salt marshes. Applied Geochemistry, 14, 559–568.Google Scholar
Wilson, M.J. (1999) The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34, 7–25.Google Scholar
Wolery, T.J. & Daveler, S.A. (1992) EQ6, a computer program for reaction path modelling of aqueous geochemical systems: user's guide and documentation. Lawrence Livermore National Laboratory, University of California.Google Scholar
Zysset, M. & Schindler, P.W. (1996) The proton promoted dissolution kinetics of K-montmorillonite. Geochimica et Cosmochimica Acta, 60, 921–931.Google Scholar