Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T08:22:06.328Z Has data issue: false hasContentIssue false

Palaeogeographic controls on palygorskite occurrence in Maastrichtian-Palaeogene sediments of the Western High Atlas and Meseta Basins (Morocco)

Published online by Cambridge University Press:  27 February 2018

A. Knidiri
Affiliation:
Laboratoire de Géosciences et Environnement, Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, BP 549, Marrakech, Morocco
L. Daoudi*
Affiliation:
Laboratoire de Géosciences et Environnement, Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, BP 549, Marrakech, Morocco
M. El Ouahabi
Affiliation:
Unité de recherche Argiles, Géochimie et Environnements sédimentaires (AGEs), Université de Liège, Département de Géologie, B18, Allée du 6 août, Sart Tilman, Liège, Belgium
B. Rhouta
Affiliation:
Laboratoire de Matière Condenseé et Nanostructures (LMCN), Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, BP 549, Marrakech, Morocco
F. Rocha
Affiliation:
Universidade de Aveiro, Campus Universitario–Santiago–3810, Aveiro, Portugal
N. Fagel
Affiliation:
Unité de recherche Argiles, Géochimie et Environnements sédimentaires (AGEs), Université de Liège, Département de Géologie, B18, Allée du 6 août, Sart Tilman, Liège, Belgium
*

Abstract

The Maastrichtian-Palaeogene series of the Western High Atlas and Meseta Basins in Morocco are particularly rich in palygorskite. The present work is aimed at clarifying the genesis of palygorskite from the interbedded facies and gaining an understanding of their relationships with the depositional environment. The mineralogical characteristics of palygorskite from these series were studied by X-ray diffraction (XRD) and electron microscopy (SEM/TEM). The palygorskite content and microstructure show large geographical and stratigraphical variations in the deposits studied. The palygorskite occurrence is directly related to palaeobathymetry, since it is the dominant clay mineral in shallow marine and restricted environments. According to the morphology of palygorskite crystallites, four types of textures were distinguished. These types of palygorskite are polygenetic, formed by chemical precipitation, by the recrystallization of smectite clays or reworked by wind or water from sub-aerial environments. The difference between the two studied sub-basins with respect to palygorskite occurrence is attributed to the palaeomorphology of the hinterlands, to the tectonic differentiation and to the physical-chemical conditions of seawater.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Juboury, A.I. (2009) Palygorskite in Miocene rocks of northern Iraq: environmental and geochemical indicators. Acta Geologica Polonica, 59, 269282.Google Scholar
Aqrawi, A.A.M. (1993) Palygorskite in the recent fluviolacustrine and deltaic sediments of southern Mesopotamia. Clay Minerals, 28, 153159.Google Scholar
Ben Aboud, A. (1998) Dépôts tertiaires de palygorskite dans des bassins circum-méditerranéens (Maroc, Espagne, Tunisie). Minéralogie, géochimie et genèse. PhD thesis, Universidad de Granada, Spain, 250 pp.Google Scholar
Ben Aboud, A., Lopez Galindo, A., Fenoll Hach-Ali, P., Chellai, E.H. & Daoudi, L. (1996). The presence, genesis and significance of palygorskite in some Moroccan Tertiary sequences. Advances in Clay Minerals, 87–89.Google Scholar
Boujo, A. (1976) Contribution à l’étude géologique du gisement de phosphate crétacé-éocène des Ganntour (Maroc occidental). Notes et Mémoires Service Géologique Maroc, 227 pp.Google Scholar
Brindley, G.W. & Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5, Mineralogical Society, London, 197–248.CrossRefGoogle Scholar
Brown, R.H. (1980) Triassic rocks of the Argana Valley, southern Morocco, and their regional structural implication. American Association of Petroleum Geologists Bulletin, 64, 9881003.Google Scholar
Callen, R.A. (1984) Clays of the palygorskite-sepiolite group: depositional environment, age and distribution. Pp. 1–37 in: Palygorskite-Sepiolite. Occurences, Genesis and Uses. (A. Singer & E. Galan, editors). Development in Sedimentology, 37. Elsevier, Amsterdam.Google Scholar
Carroll, D. (1970) Clay minerals, a guide to their x-ray identification. Geological Society of America, Special Paper, 126, 180.Google Scholar
Chahi, A., Duplay, J. & Lucas, J. (1993) Analyses of palygorskite and association clays from the Jbel Rhassoul (Morocco): chemical characteristics and origin of formation. Clays and Clay Minerals, 41, 401411.CrossRefGoogle Scholar
Chahi, A., Clauer, N. & Toulkeridis, T. (1999) Rare-earth elements as traces of the genetic relationship between smectite and palygorskite in marine phosphorites. Clay Minerals, 34, 419428.CrossRefGoogle Scholar
Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, 623 pp.Google Scholar
Chellai, E.H., Marzoqi, M., Pascal, A. & Mouflih, M. (1995) Stratigraphy and evolution of Upper Cretaceous-Paleogene sedimentary systems in the Marrakech High Atlas (Morocco). Comptes Rendus Académie des Sciences, Paris, 321, 745752.Google Scholar
Chen, T., Xu, H., Lu, A., Xu, X., Peng, S. & Yue, S. (2004) Direct evidence of transformation from smectite to palygorskite: TEM investigation. Science in China Ser. D. Earth Sciences, 47, 985994.Google Scholar
Daoudi, L. (1996) Contrôles diagénétique et paléogéographique des argiles des sédiments mésozoïques du Maroc. Comparaison avec les domaines atlantiques et téthysien. Doctorat Thesis, University of Marrakech, Morocco, 247 pp.Google Scholar
Daoudi, L. (2004) Palygorskite in the uppermost Cretaceous-Eocene Rocks from Marrakech High Atlas, Morocco. Journal of African Earth Sciences, 39, 353358.CrossRefGoogle Scholar
Daoudi, L. & Deconinck, J.F. (1994) Contrôles paléogéographique et diagénétique des successions sédimentaires argileuses du bassin atlasique au Crétacé (Haut Atlas occidental, Maroc). Journal of African Earth Sciences, 18, 123134.Google Scholar
Daoudi, L., Rocha, F., Ouahhain, B., Dinis, L. & Chafiki, D. (2008) Palaeoenvironmental significance of clay minerals in Upper Cenomanian–Turonian sediments of the Western High Atlas Basin (Morocco). Clay Minerals, 43, 615630.CrossRefGoogle Scholar
Daoudi, L., Knidiri, A. & Rhouta, B. (2009). Structure, properties and genesis of Moroccan palygorskite. Oriental Journal of Chemistry, 25, 855862.Google Scholar
Desprairies, A. (1983) Relation entre le parametre b des smectites et leur contenu en fer et magnesium. Application à l’étude des sédiments. Clay Minerals, 18, 165175.Google Scholar
Elmountassir, M. (2005) Le bassin Crétacé-Eocène des Oulad Abdoun (Maroc Central) et le bassin Mio- Pliocène de Ouarzazate (Anti-Atlas) : Etude des minéraux argileux associés aux phosphorites marines au cours de la sédimentogenèse, de la diagenèse et de l’altération supergène. Caractérisation minéralogique et géotechnique des sols gonflants. Thèse d’état, Université de Marrakech, 230 pp.Google Scholar
Frakes, L.A. (1979) Climates throughout Geologic Time. Elsevier, Amsterdam, 310 pp.Google Scholar
Galhano, C., Rocha, F. & Gomes, C. (1999) Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behaviour of the ‘Argilas de Aveiro’ formation (Portugal). Clay Minerals, 34, 109116.Google Scholar
Garcia-Romero, E. & Suarez, M. (2013) Sepiolite–palygorskite: Textural study and genetic considerations. Applied Clay Science, 86, 129144.Google Scholar
Güven, N. (1988) Smectites. Pp. 497–559 in: Hydrous Phyllosilicates (Exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.Google Scholar
Herbig, H.G. & Trappe, J. (1994) Stratigraphy of the Subatlas Group (Maastrichtian-Middle Eocene, Morocco). Newsletters on Stratigraphy, 30/3, 125165. Springer-Berlin.Google Scholar
Holtzapffel, T. (1985) Minéraux argileux: Préparation, analyse diffractomètrique et détermination. Annales de la Société Géologique du Nord, 12, 136 pp.Google Scholar
Isphording, W.C. (1973) Discussion of the occurrence and origin of sedimentary palygorskite-sepiolite. Clays and Clay Minerals, 21, 391401.Google Scholar
Isphording, W.C. (1984) The clays of Yucatan, Mexico: a contrast in genesis. Pp. 59–73 in: Palygorskite- Sepiolite Occurrences, Genesis and Uses (A. Singer & E. Galà n, editors). Developments in Sedimentology, Elsevier, Amsterdam.Google Scholar
Jamoussi, F., Ben Aboud, A. & Lopez Galindo, A. (2003) Palygorskite genesis through silicate transformation in Tunisian continental Eocene deposits. Clay Minerals, 38, 187199.Google Scholar
Jones, B.F. & Galan, E. (1988) Sepiolite and palygorskite. Pp. 631–674 in: Hydrous Phyllosilicates (Exclusive of micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America Washington, D.C.Google Scholar
Krekeler, M.P.S. & Guggenheim, S. (2008) Defects in microstructures in palygorskite-sepiolite minerals: a transmission electron microscopy (TEM) study. Applied Clay Science, 39, 98105.Google Scholar
Lancelet, Y. (1973) Chert and silica diagenesis in sediments from the central Pacific. Initial Reports of the Deep Sea Drilling Project, 17, 377405.Google Scholar
Marzoqi, M. (2001) Les systèmes sédimentaires marins du Crétacé Terminal-Paleogene dans l’Atlas de Marrakech et le bassin de Ouarzazate. Thèse d’état, Université Cadi Ayyad, Marrakech, 423 pp.Google Scholar
Mattauer, M., Tapponnier, P. & Proust, F. (1977) Sur les mécanismes de formation des chaînes intracontinentales. L’exemple des chaînes atlasiques du Maroc. Bulletin de la Société Géologique de France, 19, 521526.Google Scholar
Medina, F. (1994) Evolution structurale du Haut Atlas occidental et des régions voisines, dans le cadre de l’ouverture de l’Atlantique Central et de la collision Afrique-Europe. Doctorat thesis, University of Mohamed V, Rabat-Morocco, 294 pp.Google Scholar
Michard, A., Saddiqi, O., Chlouan, A. & Frizon, & De Lamote, D. (2008) Continental Evolution: the Geology of Morocco; Structures, Stratigraphy and Tectonics of the Africa-Atlantic-Mediterranean Triple Junction. Springer, 405 pp.Google Scholar
Millot, G. (1970) Geology of Clays. Springer-Verlag, New York, 429 pp.CrossRefGoogle Scholar
Moore, D.D. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford.Google Scholar
Mouflih, M. (1991) La série phosphatée du gisement de Benguerir. Séquences de faciès, evolution séquentielle, minéralogie et géochimie (Maastrichtien- Lutétien). Thèse Univ. Marrakech, 260 pp.Google Scholar
Muttoni, G. & Kent, D. (2007) widespread formation of chert during the early Eocene Climate Optimum. Palaeogeography Palaeoclimatology Palaeoecology, 253, 348362.Google Scholar
Oliveira, A., Rocha, F., Rodrigues, A., Jouanneau, J., Dias, A., Weber, O. & Gomes, C. (2002) Clay minerals from the sedimentary cover from the Northwest Iberian shelf. Progress in Oceanography, 52, 233247.Google Scholar
Pletsch, T., Daoudi, L., Chamley, H., Deconinck, J.F. & Charroud, M. (1996) Paleogeographic controls on palygorskite occurrence in Midcretaceous sediments of Morocco and adjacent basins. Clay Minerals, 31, 403416.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249–303 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W. Brindley & G. Brown, editors), Mineralogical Society Monograph 5, London.Google Scholar
Rhouta, B., Zatile, E., Bouna, L., Lakbita, O., Maury, F., Daoudi, L., Lafont, M.C., Amjoud, M., Senocq, F. & Jada, A. (2013) Comprehensive physicochemical study of dioctahedral palygorskite-rich clay from Marrakech High-Atlas (Morocco). Physics and Chemistry of Minerals, 40, 411424.Google Scholar
Salvan, H.M. (1986) Paléogéographie générale; In: Géologie des gites minéraux marocains, 3: phosphates. Notes et Mémoires Service Géologique Maroc, 276, 139152.Google Scholar
Shariatmadari, H. & Mermut, A.R. (1999) Magnesiumand silicon-induced phosphate desorption in smectite, palygorskite, and sepiolite-calcite systems. Soil Science Society of America Journal, 63, 11671173.Google Scholar
Singer, A. (1980) The palaeoclimatic interpretation of clay minerals in soil and weathering profiles. Earth Science Review, 15, 303326.CrossRefGoogle Scholar
Singer, A. (1984) Pedogenic palygorskite in the arid environment. Pp. 169–177 in: Palygorskite- Sepiolite. Occurrences, Genesis and Uses (A. Singer & E. Galàn, editors). Developments in Sedimentology, 37, Elsevier, Amsterdam.Google Scholar
Singer, A. & Galan, E. (1984) Palygorskite-sepiolite: occurrences, genesis and uses, Developments in Sedimentology, 37, 1352. Elsevier, Amsterdam.Google Scholar
Singer, A. & Norrish, K. (1974) Pedogenic palygorskite occurrences in Australia. American Mineralogist, 59, 508517.Google Scholar
Thiry, M. & Jacquin, T. (1993) Clay mineral distribution related to rift activity and sea level changes and paleoceanography in the Cretaceous of the Atlantic Ocean. Clay Minerals, 28, 6184.Google Scholar
Thorez, J. (1976) Practical Identification of Clay Minerals. Lelotte, Belgium, 89 pp.Google Scholar
Tlili, A., Felhi, M. & Montacer, M. (2010) Origin and depositional environment of palygorskite and sepiolite from the Ypresian phosphatic series, Southwestern Tunisia. Clays and Clay Minerals, 58, 573584.Google Scholar
Trappe, J. (1991) Stratigraphy, facies distribution and palaeogeographic of the marine Paleogene from the western High Atlas, Morocco. Neues Jahrbuch für Geologie und Paläontologie, 180, 272321.Google Scholar
Trappe, J. (1992) Faciec zonation and spatial evolution of a carbonate ramp: marginal Moroccan phosphate Sea during the Paleogene. Geology Rundschau, 81, 105126.Google Scholar
Velde, B. (1985) Clay Minerals. A Physico-Chemical Explanation of their Occurrence. Elsevier, Amsterdam, 427 pp.Google Scholar
Weaver, C.E. & Beck, K.C. (1977) Miocene of the S.E. United States: a model for chemical sedimentation in a peri-marine environment. Sedimentary Geology, 17, 1234.Google Scholar
Wurster, P. & Stets, J. (1982) Sedimentation in the Atlas Gulf II: Mid-Cretaceous events. Pp. 439–459 in: Geology of the Northwest African Continental Margin (U. Von Rad, K. Hinz, M. Sarthein & E. Seibold, editors). Springer-Verlag, Berlin.Google Scholar
Xie, Q., Chen, T., Zhou, H., Xu, X., Xu, H., Ji, J., Lu, H., & Balsam, W. (2013) Mechanism of palygorskite formation in the Red Clay Formation on the Chinese Loess Plateau, northwest China. Geoderma, 192, 3949.Google Scholar
Yalcin, H. & Bozkaya, O. (1995) Sepiolite-palygorskite from the Hekimhan region (Turkey). Clays and Clay Minerals, 43, 705717.Google Scholar