Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T15:04:48.499Z Has data issue: false hasContentIssue false

Polygenic chamosite from a hydrothermalized oolitic ironstone (Saint-Aubin-des-Châteaux, Armorican Massif, France): crystal chemistry, visible–near-infrared spectroscopy (red variety) and geochemical significance

Published online by Cambridge University Press:  13 May 2020

Yves Moëlo*
Affiliation:
Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000Nantes, France
Emmanuel Fritsch
Affiliation:
Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000Nantes, France
Eric Gloaguen
Affiliation:
BRGM, 3, avenue Claude Guillemin, BP 36009, 45060Orléans cedex 2, France ISTO, UMR 7327, Université d'Orléans, CNRS, BRGM, F-45071Orléans, France
Olivier Rouer
Affiliation:
Laboratoire Georessources, UMR 7359, FST-SCMEM, Université de Lorraine, BP 70239-54506Vandœuvre les Nancy Cedex, France

Abstract

Several generations of chamosite, including a red variety, occur in the Ordovician hydrothermalized oolitic ironstone from Saint-Aubin-des-Châteaux (Armorican Massif, France). Their chemical re-examination indicates a low Mg content (0.925 < Fe/(Fe + Mg) < 0.954), but a significant variation in IVAl. Minor vanadium is present at up to 1.1 wt.% oxide. Variations in IVAl, the vanadium content and the colour of chamosite are related to the hydrothermal reworking of the ironstone. Taking into account other published data, the ideal composition of chamosite is (Fe5–xAl1+x)(Si3–xAl1+x)O10(OH)8, with 0.2 < x < 0.8 (0.2: equilibrium with quartz; 0.8: SiO2 deficit). The red chamosite (IIb polytype) has a mean composition of (Fe3.87Mg0.23Mn0.010.07Al1.74V0.07)(Si2.33Al1.67)O10(OH)8. This chamosite is strongly pleochroic, from pale yellow (E || (001)) to deep orange red (E ⊥ (001)). Visible–near-infrared absorbance spectra show a specific absorption band centred at ~550 nm for E ⊥ (001), due to a proposed new variety of Fe/V intervalence charge-transfer mechanism in the octahedral sheet, possibly Fe2+ – V4+ → Fe3+ – V3+. While the formation of green chamosite varieties is controlled by reducing conditions due to the presence of organic matter as a buffer, that of red chamosite would indicate locally a weak increase of fO2 related to oxidizing hydrothermal solutions.

Type
Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: J. Cuadros

References

Bailey, S.W. (1980) Structures of layer silicates. Pp. 1125 in: Crystal Structures of Clay Minerals and Their X-Ray Identification (Brindley, G.W. & Brown, G., editors), Monograph 5, Chapter 1. The Mineralogical Society of Great Britain and Ireland, London, UK.Google Scholar
Bailey, S.W. (1988) Chlorite structure and crystal chemistry. Pp. 347403 in: Hydrous Phyllosilicates (Exclusive of Mica) (Bailey, S.W., editor), Reviews in Mineralogy 19. Mineralogical Society of America, Washington, DC, USA.CrossRefGoogle Scholar
Bayliss, P. (1975) Nomenclature of the trioctahedral chlorites. Canadian Mineralogist, 13, 178180.Google Scholar
Bishop, J.L., Lane, M.D., Dyar, M.D. & Brown, A.J. (2008) Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite–serpentines, chlorites and micas. Clay Minerals, 43, 3554.CrossRefGoogle Scholar
Bourdelle, F., Parra, T., Chopin, C. & Beyssac, O. (2013) A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contribution to Mineralogy and Petrology, 165, 723735.CrossRefGoogle Scholar
Brindley, G.W. (1980) Order-disorder in clay mineral structures. Pp. 125196 in: Crystal Structures of Clay Minerals and Their X-Ray Identification (Brindley, G.W. & Brown, G., editors), Monograph 5, Chapter 2. The Mineralogical Society of Great Britain and Ireland, London, UK.Google Scholar
Brown, B.E. & Bailey, J.F. (1962) Chorite polytypism: I. Regular and semi-random one-layer structures. American Mineralogist, 47, 819850.Google Scholar
Capitani, G.C., Schingaro, E., Lacalamita, M., Mesto, E. & Scordari, F. (2016) Structural anomalies in tobelite-2M 2 explained by high resolution and analytical electron microscopy. Mineralogical Magazine, 80, 143156.CrossRefGoogle Scholar
Chauvel, J.-J. (1971) Contribution à l’étude des minerais de fer de l'Ordovicien inférieur de Bretagne. Mémoires de la Société géologique et minéralogique de Bretagne, 16, 1244.Google Scholar
Chauvel, J.-J. (1974) Les minerais de fer de l'Ordovicien inférieur du bassin de Bretagne-Anjou, France. Sedimentology, 21, 127147.CrossRefGoogle Scholar
Criddle, A.J. (1990) Microscope-photometry, reflectance measurement, and quantitative color. Pp. 135169 in Advanced Microscopic Studies of Ore Minerals (Jambor, J.L. & Vaughan, D.J., editors), Short Course Handbook, 17. Mineralogical Association of Canada, Ottawa, Canada.Google Scholar
Delaloye, M.F. & Odin, G.S. (1988) Chamosite, the green marine clay from Chamoson; a study of Swiss oolitic ironstones. Pp. 7–28 in: Green Marine Clays: Oolitic Ironstone Facies, Verdine Facies, Glaucony Facies and Celadonite-Bearing Facies – A Comparative Study (Odin, G. S., editor). Elsevier, Amsterdam, The Netherlands.Google Scholar
Di Cecco, V.E., Tait, K.T., Spooner, E.T.C. & Scherba, C. (2018) The vanadium-bearing oxide minerals of the Green Giant vanadium-graphite deposit, southwest Madagascar. Canadian Mineralogist, 56, 247257.CrossRefGoogle Scholar
Ertl, A., Rakovan, J., Hugues, J.M., Bernhardt, H.-J. & Rossman, G.R. (2019) Vanadium-rich muscovite from Austria: crystal structure, chemical analysis, and spectroscopic investigations. Canadian Mineralogist, 57, 383389.CrossRefGoogle Scholar
Evans, H.T. & White, J.S. (1987) The colorful vanadium minerals: a brief review and a new classification. The Mineralogical Record, 18, 333340.Google Scholar
Faye, G.H. (1968) The optical absorption spectra of iron in six-coordinate sites in chlorite, biotite, phlogopite and vivianite. Canadian Mineralogist, 9, 403425.Google Scholar
Faye, G.H. & Nickel, E.H. (1971) On the pleochroism of vanadium-bearing zoisite from Tanzania. Canadian Mineralogist, 10, 812821.Google Scholar
Fernandez, A. & Moro, M.C. (1996) Chemical aspects of the magnetite and chlorite from Ordovician ironstones of the Zamora province (Spain). Geogaceta, 20, 15311534.Google Scholar
Fernandez, A., Chauvel, J.-J. & Moro, M.C. (1998) Comparative study of the Lower Ordovician ironstones of the Iberian Massif (Zamora, Spain) and of the Armorican Massif (Central Brittany, France). Journal of Sedimentary Research, Section A, 68, 5362.CrossRefGoogle Scholar
Ferrage, E., Martin, F., Micoud, P., Petit, S., de Parseval, P., Beziat, D. & Ferret, J. (2003) Cation site distribution in clinochlores: a NIR approach. Clay Minerals, 38, 329338.CrossRefGoogle Scholar
Fritsch, E. & Rossman, G.R. (1987) An update on color in gems. Part I: introduction and colors caused by dispersed metal ions. Gems & Gemmology, 23, 126139.CrossRefGoogle Scholar
Fritsch, E. & Rossman, G.R. (1988) An update on color in gems. Part II: colors involving multiple atoms and color centers. Gems & Gemmology, 24, 315.CrossRefGoogle Scholar
Gloaguen, E., Branquet, Y., Boulvais, P., Moëlo, Y., Chauvel, J.-J., Chiappero, P.-J. & Marcoux, E. (2007) Palaeozoic oolitic ironstone of the French Armorican Massif: a chemical and structural trap for orogenic base metal–As–Sb–Au mineralization during Hercynian strike-slip deformation. Mineralium Deposita, 42, 399422.CrossRefGoogle Scholar
Hey, M.H. (1954) A new review of the chlorites. Mineralogical Magazine, 30(224), 277291.CrossRefGoogle Scholar
Hillier, S. & Velde, B. (1991) Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Minerals, 26, 149168.CrossRefGoogle Scholar
Inoué, S. & Kogure, T. (2016) High-resolution transmission electron microscopy (HRTEM) study of stacking irregularity in Fe-rich chlorite from selected hydrothermal ore deposits. Clays and Clay Minerals, 64, 131144.CrossRefGoogle Scholar
Ito, J. (1965) Synthesis of vanadium silicates: haradaite, goldmanite and roscoelite. Mineralogical Journal, 4, 299316.CrossRefGoogle Scholar
Jiang, W.-T., Peacor, D.R. & Slack, J.F. (1992) Microstructures, mixed layering, and polymorphism of chlorite and retrograde berthierine in the Kidd Creek massive sulfide deposit, Ontario. Clays and Clay Minerals, 40, 501514.CrossRefGoogle Scholar
Joo, I.-D. & Lee, B.-H. (2010) Effect of V-doping on colour and crystallization of malayaite pigments. Journal of the Korean Ceramic Society, 47, 302307.CrossRefGoogle Scholar
Kompanchenko, A.A., Voloshin, A.V. & Balagansky, V.V. (2018) Vanadium mineralization in the Kola region, Fennoscandian Shield. Minerals, 8(11), 474.CrossRefGoogle Scholar
Leach, D.L., Taylor, R.D., Fey, D.L., Diehl, S.F. & Saltus, R.W. (2010) A deposit model for Mississipi Valley-type lead–zinc ores. Chapter A in: Mineral Deposit Models for Resource Assessment. USGS Scientific Investigation Reports 2010-5070-A. US Geological Survey, Reston, VA, USA.Google Scholar
Mathian, M., Hebert, B., Baron, F., Petit, S., Lescuyer, J.-L., Furic, R. & Beaufort, D. (2018) Identifying the phyllosilicates of hypogene ore deposits in lateritic saprolites using the near-IR vspectroscopy second derivative methodology. Journal of Geochemical Exploration, 186, 298314.CrossRefGoogle Scholar
Mattson, S.M. & Rossman, G.R. (1987) Identifying characteristics of charge transfer transitions in minerals. Physics and Chemistry of Minerals, 14, 9499.CrossRefGoogle Scholar
McOnie, A.W., Fawcett, J.J. & James, R.S. (1975) The stability of intermediate chlorites of the clinochlore–daphnite series at 2 Kbar PH2O. American Mineralogist, 60, 10471062.Google Scholar
Mellini, M., Nieto, F., Alvarez, F. & Gomez-Pugnaire, M.-T. (1991) Mica-chlorite intermixing and altered chlorite from the Nevado-Filabride micaschists, southern Spain. European Journal of Mineralogy, 3, 2738.CrossRefGoogle Scholar
Mesto, E, Scordari, F, Lacalamita, M & Schingaro, E (2012) Tobelite and NH4+-rich muscovite single crystals from Ordovician Armorican sandstones (Brittany, France): structure and crystal chemistry. American Mineralogist, 97, 14601468.CrossRefGoogle Scholar
Meunier, J.D. (1994) The composition and origin of vanadium-rich clay minerals in Colorado Plateau Jurassic sandstones. Clays and Clay Minerals, 42, 391401.CrossRefGoogle Scholar
Moëlo, Y., Gloaguen, E., Lulzac, Y. & Le Roch, P. (2006) Minéralogie du gisement de Saint-Aubin-des-Châteaux (Loire-Atlantique). Cahier des Micromonteurs, 91, 325.Google Scholar
Moëlo, Y., Lasnier, B., Palvadeau, P., Léone, P. & Fontan, F. (2000) La lulzacite, Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10, un nouveau phosphate de strontium (Saint-Aubin-des-Châteaux, Loire-Atlantique, France). Comptes Rendus de l'Académie des Sciences, Sciences de la Terre et des Planètes, 330, 317324.Google Scholar
Moëlo, Y., Lulzac, Y., Rouer, O., Palvadeau, P., Gloaguen, E. & Léone, P. (2002) Pretulite with Sc-bearing zircon and xenotime from a paleozoic sedimentary iron ore (Saint-Aubin-des-Châteaux, Armorican Massif, France). Canadian Mineralogist, 40, 16571673.CrossRefGoogle Scholar
Moëlo, Y., Rouer, O. & Bouhnik-Le Coz, M. (2008) From diagenesis to hydrothermal recrystallization: Mineralogy and chemistry of polygenic Sr-rich fluorapatite from the oolitic ironstone of Saint-Aubin-des-Châteaux (Armorican Massif, France). European Journal of Mineralogy, 20, 205216.CrossRefGoogle Scholar
Novak, F., Velensky, J., Losert, J., Kupka, F. & Valcha, Z. (1959) Orthochamosite, a new mineral from hydrothermal ore veins of Kank near Kutna Hora (Kuttenberg), Czechoslovakia. Geologie (Berlin), 8, 159167.Google Scholar
Olivier, B. (2006) The Geology and Petrology of the Merelani Tanzanite Deposit, NE Tanzania. PhD thesis, University of Stellenbosch, South Africa, 322 pp.Google Scholar
Orcel, J. (1923) Sur la bavalite de Bas-Vallon. Comptes Rendus de l'Académie des Sciences, 177, 271273.Google Scholar
Papike, J.J., Simo, S.B., Burge, P.V., Bell, A.S., Shearer, C.K. & Karner, J.M. (2016) Chromium, vanadium, and titanium valence systematics in solar system pyroxene as a recorder of oxygen fugacity, planetary provenance, and processes. American Mineralogist, 101, 907918.CrossRefGoogle Scholar
Parra, T., Vidal, O. & Theye, T. (2005) Experimental data on the Tschermak substitution in Fe-chlorite. American Mineralogist, 90, 359370.CrossRefGoogle Scholar
Platonov, A.N. (1976) The Nature of the Colour of Minerals (Dumka, Naukova, editor). Institut Geochem. i Mineral., Akad. nauk Ukr. SSR, Kiev, Ukraine, 264 pp. (in Russian).Google Scholar
Platonov, A.N., Langer, K., Chopin, C., Andrut, M. & Taran, N. (2000) Fe2+–Ti4+ charge-transfer in dumortierite. European Journal of Mineralogy, 12, 521528.CrossRefGoogle Scholar
Pochon, A., Beaudoin, G., Branquet, Y., Boulvais, P., Gloaguen, E. & Gapais, D. (2017) Metal mobility during hydrothermal breakdown of Fe–Ti oxides: insights from Sb–Au mineralizing event (Variscan Armorican Massif, France). Ore Geology Reviews, 91, 6699.CrossRefGoogle Scholar
Pochon, A., Branquet, Y., Gloaguen, E., Ruffet, G., Poujol, M., Boulvais, P. et al. (2019) A Sb ± Au mineralizing peak at 360 Ma in the Variscan belt. Bulletin de la Société Geologique de France, 190, 4.CrossRefGoogle Scholar
Pochon, A., Gapais, D., Gloaguen, E., Gumiaux, C., Branquet, Y., Cagnard, F. & Martelet, G. (2016a) Antimony deposits in the Variscan Armorican belt, a link with mafic intrusives? Terra Nova, 28, 138145.CrossRefGoogle Scholar
Pochon, A., Gloaguen, E., Branquet, Y., Poujol, M., Ruffet, G., Boiron, M.-C. et al. (2018) Variscan Sb–Au mineralization in Central Brittany (France): a new metallogenic model derived from the Le Semnon district. Ore Geology Reviews, 97, 109142.CrossRefGoogle Scholar
Pochon, A., Poujol, M., Gloaguen, E., Branquet, Y., Cagnard, F., Gumiaux, C. & Gapais, D. (2016b) U–Pb LA-ICP-MS dating of apatite in mafic rocks: evidence for a major magmatic event at the Devonian–Carboniferous boundary in the Armorican Massif (France). American Mineralogist, 101, 24302442.CrossRefGoogle Scholar
Povar, I., Spinu, O., Zinicovscaia, I., Pintile, B. & Ubaldini, S. (2019) Revised Pourbaix diagrams for the vanadium–water system. Journal of Electrochemical Science and Engineering, 9, 7584.CrossRefGoogle Scholar
Richardson, S.M. & Richardson, J.W. (1982) Crystal structure of a pink muscovite from Archer's Post, Kenya: implications for reverse pleochroism in dioctahedral micas. American Mineralogist, 67, 6975.Google Scholar
Rule, A.C. & Bailey, S.W. (1987) Refinement of the crystal structure of a monoclinic ferroan clinochlore. Clays and Clay Minerals, 35, 129138.CrossRefGoogle Scholar
Shau, Y.-H. & Peacor, D.R. (1992) Phyllosilicates in hydrothermally altered basalts from DSDP Hole 504B, Leg 83 – a TEM and AEM study. Contributions to Mineralogy and Petrology, 112, 119133.CrossRefGoogle Scholar
Shirozu, H. & Bailey, S.W. (1965) Chlorite polytypism: III. Crystal structure of an orthohexagonal iron chlorite. American Mineralogist, 50, 868885.Google Scholar
Smyth, J.R., Darby Dyar, M., May, H.M., Bricker, O.P. & Acker, J.G. (1997) Crystal structure refinement and Mössbauer spectroscopy of an ordered triclinic clinochlore. Clays and Clay Minerals, 45, 544550.CrossRefGoogle Scholar
Takeno, N. (2005) Atlas of Eh–pH Diagrams. Intercomparison of Thermodynamic Databases. Open file report 419. Geological Survey of Japan, Tokyo, Japan, 287 pp.Google Scholar
Tartèse, R., Poujol, M., Gloaguen, E., Boulvais, P., Drost, K., Košler, J. & Ntaflos, T. (2015) Hydrothermal activity during tectonic building of the Variscan orogen recorded by U–Pb systematics of xenotime in the Grès-Armoricain formation, Massif Armoricain, France. Mineralogy and Petrology, 109, 24682483.CrossRefGoogle Scholar
Trincal, V. & Lanari, P. (2016) Al-free di-trioctahedral substitution in chlorite and a ferri-sudoite end-member. Clay Minerals, 51, 675689.CrossRefGoogle Scholar
Trincal, V., Lanari, P., Buatier, M., Lacroix, B., Charpentier, D., Labaume, P. & Muňoz, M. (2015) Temperature micro-mapping in oscillatory-zoned chlorite: application to study of a green-schist facies fault zone in the Pyrenean Axial Zone (Spain). American Mineralogist, 100, 868885.CrossRefGoogle Scholar
Uher, P., Kováčik, M., Kubiš, M., Shtukenberg, A. & Ozdín, D. (2008) Metamorphic vanadian–chromian silicate mineralization in carbon-rich amphibole schists from the Malé Karpaty Mountains, Western Carpathians, Slovakia. American Mineralogist, 93, 6373.CrossRefGoogle Scholar
Vidal, O., De Andrade, V., Lewin, E., Muñoz, M., Parra, T. & Pascarelli, S. (2006) P–T–deformation–Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan). Journal of Metamorphic Geology, 24, 669683.CrossRefGoogle Scholar
Walker, J.R. & Bish, D.L. (1992) Application of Rietveld refinement techniques to a disordered IIb Mg-chamosite. Clays and Clay Minerals, 40, 319322.CrossRefGoogle Scholar
Whitney, G. & Northrop, H.R. (1986) Vanadium chlorite from a sandstone-hosted vanadium–uranium deposit, Henry basin, Utah. Clays and Clay Minerals, 34, 488495.CrossRefGoogle Scholar
Wiewióra, A. & Weiss, Z. (1990) Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group. Clay Minerals, 25, 8192.Google Scholar
Zanazzi, P.F., Montagnoli, M., Nazzareni, S. & Comodi, P. (2006) Structural effects of pressure on triclinic chlorite: a single-crystal study. American Mineralogist, 91, 18711878.CrossRefGoogle Scholar
Zane, A., Sassi, R. & Guidotti, C.V. (1998) New data on metamorphic chlorite as a petrogenetic indicator mineral, with special regard to greenschist-facies rocks. Canadian Mineralogist, 36, 713726.Google Scholar
Zheng, H. & Bailey, S.W. (1989) The structures of intergrown triclinic and monoclinic II-b chlorites from Kenya. Clays and Clay Minerals, 37, 308316.CrossRefGoogle Scholar