Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T10:52:39.442Z Has data issue: false hasContentIssue false

Prograde and retrograde diagenetic and metamorphic evolution in metapelitic rocks of Sierra Espuña (Spain)

Published online by Cambridge University Press:  09 July 2018

I . Abad*
Affiliation:
Departamento de Geología, Universidad de Jaén, 23071 Jaén, Spain
F. Nieto
Affiliation:
Instituto Andaluz de Ciencias de la Tierra y Departamento de Mineralogía y Petrología, Universidad de Granada, 18002, GranadaSpain
D. R. Peacor
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109-1063, USA
N. Velilla
Affiliation:
Departamento de Mineralogía y Petrología, Universidad de Granada, 18002, GranadaSpain
*
*E-mail: fnieto@ugr.es

Abstract

An unusually complete sequence of pelitic rocks ranging from diagenetic to greenschist-facies metamorphic grades occurs in southern Sierra Espun˜a, Spain. Prograde and retrograde reactions have been studied by X-ray diffraction and electron microscopy (SEM, TEM and AEM). The prograde reaction series, with reactions facilitated by tectonic stress, includes: (1) R4 interstratified illite-smectite in the diagenetic Malaguide Complex that preserves the variable orientation of original smectite packets, and has 1Md polytypism; (2) chemically heterogeneous illite and Na-K dioctahedral white micas that progressively evolve toward chemical and textural equilibrium in the anchizonal Intermediate Units; and (3) thick, defect-free packets of phengite, paragonite and clinochlore which have a typical metamorphic texture, in the Alpujarride Complex. Two superimposed retrograde episodes produced: (a) sudoite at near-peak metamorphic conditions and (b) dioctahedral smectite during low-temperature retrograde diagenesis.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H. & Peacor, D.R. (1986) Transmission and analytical electron microscopy of the smectite-toillite transition. Clays and Clay Minerals, 34, 165179.Google Scholar
Azañón, J.M. & Crespo-Blanc, A. (2000) Exhumation during a continental collision inferred from the tectonometamorphic evolution of the Alpujarride Complex in the central Betics (Alborán Domain, SE Spain). Tectonics, 19, 549565.Google Scholar
Bevins, R.E., Robinson, D. & Rowbotham, G. (1991) Compositional variations in mafic phyllosilicates from regional low-grade metabasites and application of the chlorite geothermometer. Journal of Metamorphic Geology, 9, 711721.CrossRefGoogle Scholar
Cliff, G. & Lorimer, G.W. (1975) The quantitative analysis of thin specimens. Journal of Microscopy, 103, 203 207.CrossRefGoogle Scholar
Crowley, S.F. (1991) Diagenetic modification of detrital muscovite: an example from the Great Limestone Cyclothem (Carboniferous) of Co. Durham, UK. Clay Minerals, 26, 91103.Google Scholar
Dong, H. & Peacor, D.R. (1996) TEM observations of coherent stacking relations in smectite and illite of shales: evidence for MacEwan crystallites and dominance of 2M1 polytypes. Clays and Clay Minerals, 44, 257275.CrossRefGoogle Scholar
Essene, E. & Peacor, D.R. (1995) Clay mineral thermometry: a critical perspective. Clays and Clay Minerals, 43, 540553.CrossRefGoogle Scholar
Fransolet, A.M. & Bourguignon, P. (1978) Dioctahedral chlorite in quartz veins from Ardennes, Belgium. The Canadian Mineralogist, 16, 365373.Google Scholar
Fransolet, A.M. & Schreyer, W. (1984) Sudoite, di/ trioctahedral chlorite: a stable low-temperature phase in the system MgO-Al2O3-SiO2-H2O. Contributions to Mineralogy and Petrology, 86, 409417.CrossRefGoogle Scholar
Frey, M. (1987) Very low-grade metamorphism of clastic sedimentary rocks. Pp. 958 in: Low Temperature Metamorphism (Frey, M., editor). Blackie, Glasgow, UK.Google Scholar
Giorgetti, G., Goffé, B., Memmi, I. & Nieto, F. (1998) Metamorphic evolution of Verrucano metasediments in northern Apennines: new petrological constraints. European Journal of Mineralogy, 10, 12951308.Google Scholar
Guidotti, C.V. & Sassi, F.P. (1986) Classification and correlation of metamorphic facies series by means of muscovite b0 data from low grade metapelites. Neues Jahrbuch für Mineralogie Abhandlungen, 153, 363380.Google Scholar
Guidotti, C.V., Yates, M.G., Dyar, M.D. & Taylor, M.E. (1994) Petrogenetic implications of the Fe3+ content of muscovite in pelitic schists. Amer ican Mineralogist, 79, 793795.Google Scholar
Guthrie, G.D. & Veblen, D.R. (1989) High resolution electron microscopy of mixed-layer illite/smectite: Computer simulations. Clays and Clay Minerals, 37, 111.CrossRefGoogle Scholar
Ho, N. Peacor, D.R. & Van der Pluijm, B.A. (1996) Contrasting roles of detrital and authigenic phyllosilicates during slaty cleavage development. Journal of Structural Geology, 18, 615623.Google Scholar
Jiang, W.T., Peacor, D.R., Merriman, R.J. & Roberts, B. (1990) Transmission and analytical electron microscopic study of mixed layer illite/smectite formed as an apparent replacement product of diagenetic illite. Clays and Clay Minerals, 38, 449468.Google Scholar
Jiang, W.T., Peacor, D.R. & Buseck, P.R. (1994) Chlorite geothermometry? Contamination and apparent octahedral vacancies. Clays and Clay Minerals, 42, 593 605.Google Scholar
Kisch, H.J. (1991) Development of slaty cleavage and degree of very-low-grade metamorphism: a review. Journal of Metamorphic Geology, 9, 735750.CrossRefGoogle Scholar
Knipe, J.R. (1981) The interaction of deformation and metamorphi sm in slates. Tectonophysics, 78, 249 272.Google Scholar
Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277279.Google Scholar
Li, G., Peacor, D.R., Merriman, R.J. & Roberts, B. (1994a) The diagenetic to low grade metamorphism evolution of matrix white mica in the system muscoviteparagonite in a mudrock from Central Wales, UK. Clays and Clay Minerals, 42, 369381.Google Scholar
Li, G., Peacor, D.R., Merriman, R.J., Roberts, B. & Van der Pluijm, B.A. (1994b) TEM and AEM constraints on the origin and significance of chlorite-mica stacks in slates: an example from Central Wales, U.K. Journal of Structural Geology, 16, 1139 1157.CrossRefGoogle Scholar
Livi, K.J.T., Veblen, D.R., Ferry, J.M. & Frey, M. (1997) Evolution of 2:1 layered silicates in low-grade metamorphosed Liass ic sha les of Central Switzerland. Journal of Metamorphic Geology, 15, 323 344.CrossRefGoogle Scholar
Lonergan, L. (1991) Structural evolution of the Sierra Espuña, Betic Cordillera, SE Spain. PhD thesis, Oxford University, UK.Google Scholar
Lonergan, L., Platt, J.P. & Gallagher, L. (1994) The Internal-External Zone Boundary in the eastern Betic Cordillera, SE Spain. Journal of Structural Geology, 16, 175 188.Google Scholar
Mäkel, G.H. (1981) Differences in tectonic evolution of superimposed Maláguide and Alpujárride tectonic units in the Espuña area (Betic Cordilleras, Spain). Geology in Mijnbouw, 60, 203208.Google Scholar
Mäkel, G.H. (1985) The geology of the Maláguide Complex and its bearing on the geodynamic evolution of the Betic-Rif orogen (southern Spain and northern Morocco). GUA papers of Geology. Ser 1, 22, 263 pp.Google Scholar
Mäkel, G.H. & Rondeel, H.E. (1979) Differences in stratigraphy and metamorphism between superposed Maláguide and Alpujárride units in the Espuña area (Betic Cordilleras, Spain). Estudios Geológicos, 35, 109117.Google Scholar
Martín-Martín, M. & Martín-Algarra, A. (1997) La estructura del área de Sierra Espuña (Contacto Zonas Internas-Externas, Sector oriental de la Cordill era Bética). Estudios Geológicos, 53, 237248.Google Scholar
Merriman, R.J. & Peacor, D.R. (1999) Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. Pp. 1060 in: Low-Grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Science, Oxford, UK.Google Scholar
Merriman, R.J. & Roberts, B. (1985) A survey of white mica crystallinity and polytypes in pelitic rocks of Snowdonia and Llyn, North Wales. Mineralogical Magazine, 49, 305319.Google Scholar
Merriman, R.J., Roberts, B. & Peacor, D.R. (1990) A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, UK. Contributions to Mineralogy and Petrology, 106, 2740.Google Scholar
Nieto, F. (1997) Chemical composition of metapelitic chlorites: X-ray diffraction and optical property approach. European Journal of Mineralogy, 9, 829841.Google Scholar
Nieto, F., Velilla, N., Peacor, D.R. & Ortega-Huertas, M. (1994) Regional retrograde alteration of sub-greenschist facies chlorite to smectite. Contributions to Mineralogy and Petrology, 115, 243252.Google Scholar
Nieto, F., Ortega-Huertas, M., Peacor, D.R. & Arostegui, J. (1996) Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin. Clays and Clay Minerals, 44, 304323.Google Scholar
Oliver, J. (1986) Fluids expelled tectonically from orogenic belts: their role in hydrocarbon migration and other geologic phenomena. Geology, 14, 99102.2.0.CO;2>CrossRefGoogle Scholar
Paquet, J. (1969) E´ tude géologique de l’Ouest de la province de Murcie. Bulletin de la Societégeologique de France, 111, 270 pp.Google Scholar
Peacor, D.R. (1992) Diagenesis and low-grade metamorphism of shales and slates. Pp. 113140 in. Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy (Buseck, P.R., editor). Reviews in Mineralogy, 27, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Pouchou, J.L. & Pichoir, F (1985) ‘PAP’ (f) (r) (t) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbe am Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Sanz de Galdeano, C., Martín-Martín, M. & Estévez, A. (2001) Unidades tectónicas y estructura del sector meridional de Sierra Espuña (Cordillera Bética, Murcia). Estudios Geológicos, 56, 269278.Google Scholar
Taylor, S.R. & McLennan, S.M. (1985) The Continental Crust: its Composition and Evolution. Blackwell, Oxford, UK, 312 pp.Google Scholar
Van der Pluijm, B.A., Ho, N.C., Peacor, D.R. & Merriman, R.J. (1998) Contradictions of slate formation resolved. Nature, 392, 348.Google Scholar
Warr, L.N. & Rice, H.N. (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141152.Google Scholar
Zhao, G., Peacor, D.R. & McDowell, S.D. (1999) ‘Retrograde diagenesis’ of clay minerals in the Precambrian Freda sandstone, Wisconsin. Clays and Clay Minerals, 47, 119130.Google Scholar