Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T14:48:08.985Z Has data issue: false hasContentIssue false

Quantification des teneurs en opale biogene des sediments de l'Ocean Austral par diffractometrie X

Published online by Cambridge University Press:  09 July 2018

G. Bareille
Affiliation:
Département de Géologie et Océanographie, UA 197, Université de Bordeaux 1, avenue des Facultés, 33405 Talence Cedex, France
M. Labracherie
Affiliation:
Département de Géologie et Océanographie, UA 197, Université de Bordeaux 1, avenue des Facultés, 33405 Talence Cedex, France
N. Maillet
Affiliation:
Département de Géologie et Océanographie, UA 197, Université de Bordeaux 1, avenue des Facultés, 33405 Talence Cedex, France
C. Latouche
Affiliation:
Département de Géologie et Océanographie, UA 197, Université de Bordeaux 1, avenue des Facultés, 33405 Talence Cedex, France

Résumé

Le dosage de l'opale biogène dans les sédiments marins peut être effectué par diffractométrie X par la mesure des surfaces des bandes de diffusion et par la mesure des surfaces des pics de cristobalite. La surface de la bande de diffusion, observée sur les diagrammes X de sédiments non chauffés, caractérise la concentration en composés amorphes (organiques et inorganiques). Elle permet de quantifier l'opale biogène de sédiments ne contenant que peu ou pas d'amorphes non biogènes. La surface du pic de cristobalite, obtenu par transformation de l'opale biogène par chauffage à 1050–1100°C pendant 12 h, permet de doser la silice biogène de divers sédiments. Ces deux approches méthodologiques ont été appliquées aux sédiments d'une carotte (MD 84–527) prélevée dans le secteur ouest-Indien de l'Océan Austral. Ce matériel, qui a enregistré la sédimentation des 40,000 dernières années, ne renferme qu'accessoirement des constituants amorphes volcaniques. Les concentrations en silice biogène sont obtenues avec une précision de ±10%. Le comptage des diatomées par observation au microscope a été également réalisé sur les mêmes sédiments. Les courbes des teneurs en opale biogène obtenues par les deux méthodes sont comparables et se corrèlent bien à l'abondance totale des diatomées.

Abstract

Abstract

The XRD peak of cristobalite (4·05 Å) and diffuse X-ray scattering bands can be used for quantitative analysis of biogenic opal in marine sediments. For non-heated samples, diffuse bands are due to X-ray scattering by the whole amorphous fraction (organic and inorganic). For samples which contain little or no inorganic amorphous components, these diffuse bands can be used for quantitative analysis of biogenic opal. Conversely, heating at 1050–1100°C for 12 h causes biogenic silica to transform into cristobalite, and by measuring the area of the cristobalite peak, the amount of biogenic silica can be measured whatever the nature of the sediment. The two approaches (natural versus heated samples) have been used to study sediments cored in the western Indian part of the Southern Ocean. These sediments encompass the last 40,000 years and do not contain amorphous volcanic components. The content of biogenic silica has been obtained with an accuracy of ±10%. The curves of opal abundance variation along the core obtained from the two X-ray methods and micropaleontologic counting are very similar.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

Bezrukov, P.L. (1955) Distribution and rate of deposition of silicate sediments in the sea of Okhotsk. Dokl. Akad. Nauk. SSR 103,473-476.Google Scholar
Bogdanov, Yu.A., Levitan, M A. Plyusnina, I.I. (1974) Quantitative analysis of quartz and opal in ocean sediment by infrared spectroscopy. Oceanology 14, 756761.Google Scholar
Böstrom, K., Kraemek, T. & Garner, S. (1973) Provenance and accumulation rates of opaline silica^ Al, 11 Fe, Mn, Cu, Ni, and Go in Pacific pdagic sediments. Chan. GeoL 11,123-146.CrossRefGoogle Scholar
CalvektS, E. (1966) Aocumiilatkn (rfdiatiNiiaocous silica in Ibesediiiieotsctf the Gulf of Cafifionna. GeoL Soc. Am. Bull. 77, 569596 Google Scholar
Chesiek R. & Eldeiheld H. (1968) The infaned detenninatkio of opal In sOioeous deep-sea sediments. Geochim Cosmochim. Acta 32, 11281140.Google Scholar
Crespo, A. (1975) Etudes par diffractomérie X de matériaux amorphes et partielkmet crislattises. Thèse 3è Cyde, Univ. de Pau.Google Scholar
DeMastek, D.J. (1981) The saygrfy and acaimnlation rfsiiica in the marine scdhnciils. Geochim. Casmodum. Acta 45, 17151732 Google Scholar
Dymond, J. (1981) Geochemistry of Nazca plate surface sedimqits: an evahiation of hydrothermal, biogenic, detrital and hydrogeoaus sources. GeoL Soc. Am. Mem. 154, 133173.Google Scholar
EGGoman, D.W., Manheim, F.T. Beizek, P.R. (1980) Dissoluticon and analysis of amwphous silica in marine sediments. J. Sed. PeL 51, 215225.Google Scholar
Egma, D. & Van dekGaast, S.J. (1971) Determination of opal in marine sediniraits by X-ray diffraction Neth. J. Sea RFes. 5, 382389.Google Scholar
Ellis D.B. (1972) Htthfcene sediment of the South AitanticOceim: The calcite compensation depth and concentraction of calcite, opal, and quartz. MS thesis, Corvallis, Oregonon Stale Univrasity, USA.Google Scholar
Ellis, D.B.& Moore, T.C. (1973) Calcium cardonate, opal and quartz in Holocene pelagic sediments and the calcite compensation levd in tbe South Adanlic Ocean. J. Mar. Res. 31, 210227.Google Scholar
Emelyanov, E.M. & Shmeiis, K.M. (1971) Suspended matter in the Medhenanean sea. 417439 in: The Meditematean Sea–a Natund Sedimentatum LabonOory. (Stanley, D J., editor.)Google Scholar
Flökke, O.W. (1961) A discussion of the tzidyndte-ciistabalile praUran. Silic. Ind. 26, 415418.Google Scholar
Goldberg, F.D. (1958) Detraminatioa opal in marine sediments. Mar. Res. 17, 178182 Google Scholar
Havs, J.D. Shackleton, N.J. & Irving, G. (1976) Recoasbuctioa of die Atlantic and Weston faidian Ocean sectms of 18,000 BP Antaictk: Ocean. GeoL Soc. Am. Mem. 145, 537–372.Google Scholar
Heath|F.R. Holusiek, C.D. Anderson|D.R.& Leneem|M. (1983) Why consider subseabed disposali of high level nuclear wastes? Pp. 303325 in: Radtoactive Intersdatce (Park, P.K., Kester, D.R., Duedall, I.W., Ketchum, B-H., editois).Google Scholar
Hurd, D.C. (1973) Interactions of biogenic silica, sediment, and sea water in the central equatorial Pacific. Geodiim. Cosmochim. Ada 37, 2257– 2282.Google Scholar
Hukd D.C., & Thevek, F. (1977) Changes in the physical and chemical properties of biogenic silica from the central equatorial Pacific:Part I: Refractive index, drasily and water ooateot of acid cleaned samples. Am. J. Sci 277, 11681202.Google Scholar
Koblenz-Miskhe|O. J., Volkovinsky|V.V. Kabanova, J.F. (1970) Plankton primary production of the worid ocean. Pp. 183-193 in: Scentific Explanation. of die South Pacific (Wooster, W.S. editor). Natioiial Academy of Sdenoes, Wastdngton DC. Google Scholar
Labracherie, M., Labeyrie, L.D., Duprat, J. Bard, E., Arnold, M., Pichon, J.J. & Duplessy, J.C. (1989) The last delegation in the Southern Ocean. Paleoceanography 4, 629638 Google Scholar
Lapaquellekie, Y. (1987) Utilisation de la diffractometric X pour la determination des constituants amorphes dans les sediments marins (silice biogene et cendres volcaniques). Clay Miner. 22, 457463 Google Scholar
Leinen, M. (1977) A nonnative calculation tedmique for d^ennining opal m deep-sea sediments. Geodmn. Casmodtim. Ada 41, 671676.Google Scholar
Leinen, M. (1985) Techniques for determing opal in deep-sea sediments: a comparisons of radiolarian counts and X-ray diffiraction data. Marine Micropdeontology 375383.Google Scholar
Leinen, M., Cwienk, D., Heath, G.R., Biscaye, P.E., Koixa, V., Thihm, J. & Dauthin, J.P. (1986) Distributioa of biogenic «Hra and quartz in leoent deep-sea sednnents. Geobgy 14, 199-203.Google Scholar
Listzin, A.P. (1971) Geochmical, mineralogical, and palcontologic studio (Leg, Deep Sea Diillnig Project). Initial Reports of the DCeep sea Drilling Project 6, 829961.Google Scholar
Martin, J.H. Knauek, G.A. (1973) The elemental composition of plankton. Geochim. Casmochim. Acta 37, 16391653.Google Scholar
Molina-Cruz, A. (1976) Palo-Oceanography of the subtropical southeastern pacific during late Quaternary, a study of radiolaria, opal and quartz contents of deep-sea sediments. MS thesis, Corvallis, Oregon State University, USA.Google Scholar
Molina-Cruz, A. & Price, P. (1977) Distribution of opal and quartz in the ocean floor of the sub-troipical southeastern Pacific. Geology 5, 8184.Google Scholar
Moore, T.C. Jr. (1973) Method of randomly distributing grains for microscopic examination. J. Sed. Pet. 43, 904906.Google Scholar
Mortlock, R. & Frolich, P.N. (1989) A simple method for the rapid determimation of biogenic opal in pelagic marine sediments. Deep-sea Res. 36, 14151426.Google Scholar
Pichon J.J.(1985) Les diatomé traceurs de l'é climatique e hydrologique de l'Ocean Austral au couirs du dernier cycle climatique. Thèse de 3è Cycle, Bordeaux, France.Google Scholar
Pisias, N.G. (1975) Late quatranary sediment of the Panama Basin-sedimentation rates, praiodidties and controls of the carbonate and opal accumulation. Geol Soc. Am. Mem. 145, 375392.Google Scholar
Pisias, N.G. & Leinen, M. (1984) Late Pleistocene variability of the northwest sector of the Pacific Ocean. Pp. 307330 in : Milankovitch asnd Cliamte (A. Berger et al. editors). Riedel, New York.Google Scholar
Robertson, J.H. (1975) Glacial to interglacial oceanographic changes in the northwest Pacific, including a continuous record of the last 400,000 years. Thesis, Columbia Univ., New York, USA.Google Scholar
Roger, B. (1987) Repartition et localoisation des metaux traces dans les sediments. Application a l'estuaire de la Loire. Thèse Univ. Nantes, France. Google Scholar
Tréguer, P. (1986) Ecosystèmes pèmes pélgiques marins. Collection d' écologie 19 (Masson, éditeur)Google Scholar
Van Bennekom, A.J., Jansen, J.H.F., Van der Gaast, S.J., Van Iperen, J.M. & Pieters J. (1989) Aluminium-rich opal:intermediate in the preservation of biogenic silica in the Zaire (Congo) deep-sea fan. Deep-sea Res. 36, 173190.Google Scholar