Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T12:37:24.208Z Has data issue: false hasContentIssue false

Report of the Association Internationale pour l'Etude des Argiles (AIPEA) Nomenclature Committee for 2001: Order, disorder and crystallinity in phyllosilicates and the use of the ‘Crystallinity Index’

Published online by Cambridge University Press:  09 July 2018

S. Guggenheim*
Affiliation:
AIPEA Nomenclature Committee, Department of Earth and Environmental Sciences, Universityof Illinois at Chicago, 845 W. Taylor St., ChicagoIllinois 60607, USA
D. C. Bain
Affiliation:
Macaulay Land Use Research Institute, CraigiebucklerAberdeen AB15 8QH, UK
F. Bergaya
Affiliation:
Centre de Recherche de la Matière Divisée (CRMD), National Centre of Scientific Research, University of Orléans, 1b Rue de la Férollerie, 45 071 Orléans Cedex 2, France
M. F. Brigatti
Affiliation:
Department of Earth Sciences, Modena and Reggio Emilia University, Largo S. Eufemia 19, I-41100, ModenaItaly
V. A. Drits
Affiliation:
Geological Institute of the Russian Academy of Science, 7 Pyzerskii Per, Moscow J-17, Russia
D. D. Eberl
Affiliation:
US Geological Survey, 3215 Marine St., BoulderColorado 80303, USA
M. L. L. Formoso
Affiliation:
9500, Ave Bento Gonçalves, Campus do Vale, Institute of Geosciences, University Federal do Rio Grande do Sul, Porto Alegre - RS - Brazil, CEP - 91540-000
E. Galán
Affiliation:
Department of Crystallography and Minerals, Facultad de Quimica Universite, SevillaSpain
R. J . Merriman
Affiliation:
British Geological Survey, KeyworthNottingham NG12 5GG, UK
D. R. Peacor
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
H. Stanjek
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universtät Munchen, D-85350 Freising-Weihenstephan, Germany
T. Watanabe
Affiliation:
Joetsu University of Education, Joetsu Niigata 943, Japan
*
*E-mail: xtal@uic.edu

Abstract

The purpose of this report is to describe the appropriate use of indices relating to crystallinity, such as the ‘crystallinity index’, the ‘Hinckley index’, the ‘Kü bler index’, and the ‘Árkai index’. A ‘crystalline’ solid is defined as a solid consisting of atoms, ions, or molecules packed together in a periodic arrangement. A ‘crystallinity index’ is purported to be a measure of crystallinity, although there is uncertainty about what this means (see below). This report discusses briefly the nature of order, disorder and crystallinity in phyllosilicates and discusses why the use of a ‘crystallinity index’ should be avoided. If possible, it is suggested that indices be referred to using the name of the author who originally described the parameter, as in ‘Hinckley index’ or ‘Kübler index’, or in honour of a researcher who investigated the importance of the parameter extensively, as in ‘Árkai index’.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Árkai, P. (1991) Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. Journal of Metamorphic Geology, 9, 723734.CrossRefGoogle Scholar
Árkai, P. & Tóth, N.M. (1983) Illite crystallinity: combined effects of domain size and lattice distortion. Acta Geologica Hungarica, 26, 341358.Google Scholar
Árkai, P., Sassi, F.P. & Sassi, R. (1995) Simultaneous measurements of chlorite and illite crystallinity: a more reliable geothermometric tool for monitoring low- to very low-grade metamorphisms in metapelites. A case study from the Southern Alps (NE Italy). European Journal of Mineralogy, 7, 11151128.CrossRefGoogle Scholar
Árkai, P., Merriman, R.J., Roberts, B., Peacor, D.R. & Tóth, M. (1996) Crystallinity, crystallite size and lattice strain of illite-muscovite and chlorite: comparison of XRD and TEM data for diagenetic and epizonal pelites. European Journal of Mineralogy, 8, 11191137.CrossRefGoogle Scholar
Árkai, P., Mata, M.P., Giorgetti, G., Peacor, D.R. & Tóth, M. (2000) Comparison of diagenetic and low-grade metamorphic evolution of chlorite in associated metapelites and metabasites: An integrated TEM and XRD study. Journal of Metamorphic Geology, 18, 531550.Google Scholar
Brindley, G.W. (1980) Order-disorder in clay mineral structures. Pp. 125196 in. Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. and, G. Brown editors). Monograph 5, Mineralogical Society, London.Google Scholar
Drits, V.A., Sahkarov, B.A., Salyn, A.L. & Manceau, A. (1993) Structural model for ferrihydrite. Clay Minerals, 28, 185207.CrossRefGoogle Scholar
Drits, V.A., Środoń, J. & Eberl, D.D. (1997) XRD measurements of mean crystallite thickness of illite and illite/smectite: reappraisal of the Kübler index and the Scherrer equation. Clays and Clay Minerals, 45, 461475.CrossRefGoogle Scholar
Dunoyer de Segonzac, G. (1969) Les minéraux argileux dans la diagenèse passage au métamorphisme. Mémoires du Service de la Carte Géologique d’Alsace et de Lorraine, 29, 321 p.Google Scholar
Dunoyer de Segonzac, G. & Bernoulli, D. (1976) Diagenese et métamorphisme des argiles dans le Rhétien Sud-alpin et Austro-alpin (Lombardie et Grisons). Bulletin SocietéGéologique de la France, 18, 12831293.Google Scholar
Eberl, D.D. & Velde, B. (1989) Beyond the Kübler index. Clay Minerals, 24, 571577.Google Scholar
Eberl, D.D., Środoń, J., Lee, M., Nadeau, P.H. & Northrop, H.R. (1987) Sericite from the Silverton caldera, Colorado: Correlation among structure, composition, origin and particle thickness. American Mineralogist, 72, 914934.Google Scholar
Eberl, D.D., Środoń, J., Kralik, M., Taylor, B.E. & Peterman, Z.E. (1990) Ostwald ripening of clays and metamorphic minerals. Science, 248, 474477.Google Scholar
Essene, E.J. & Peacor, D.R. (1995) Clay mineral thermometry a critical perspective. Clays and Clay Minerals, 43, 540553.Google Scholar
Flehmig, W. (1973) Kristallinität und Infrarotspektroskopie natürlicher dioktaedrischer Illite. Neues Jahr buch für Mineralogie , Monatshefte, 351361.CrossRefGoogle Scholar
Frey, M. (1987) Very low-grade metamorphism of clastic sedimentary rocks. Pp. 958 in: Low Temperature Metamorphism (Frey, M., editor). Blackie & Son Ltd., Glasgow, UK.Google Scholar
Hinckley, D.N. (1963) Variability in ‘crystallinity’ values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, II, 229235.Google Scholar
Jaboyedoff, M., Bussy, F., Kübler, B & Thelin, Ph. (2001) Illite “Crystallinity” Revisited. Clays and Clay Minerals, 49, 156167.Google Scholar
Jiang, W.-T., Peacor, D.R., Árkai, P., Tóth, M. & Kim, J.- W. (1997) TEM and XRD determination of crystallite size and lattice strain as a function of illite crystallinity in pelitic rocks. Journal of Metamorphic Geology, 15, 267281.CrossRefGoogle Scholar
Kisch, H.J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. Pp. 289493 in: Diagenesis of Sediments and Sedimentary Rocks, 2 (Larsen, G. and Chilingar, G.V., editors). Elsevier, Amsterdam.Google Scholar
Kisch, H.J. (1990) Calibration of the anchizone: a critical comparison of illite ‘crystallinity’ scales used for definition. Journal of Metamorphic Geology, 8, 3146.CrossRefGoogle Scholar
Kisch, H.J. (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings and interlaboratory standards. Journal of Metamorphic Geology, 9, 665670.CrossRefGoogle Scholar
Kübler, B. (1964) Les argiles, indicateurs de métamorphisme. Revue de l’Institut Francaise du Petrole, 19, 10931112.Google Scholar
Kübler, B. (1967) La cristallinitéde l’illite et les zones tout áfait supécieures du métamorphisme. In Étages Tectoniques. Collogue de Neuchâ tel 1996, pp. 105121.Google Scholar
Kübler, B. (1984) Les indicateurs des transformations physiques et chimiques dans la diagenèse, température et calorimétrie. Pp. 489596 in: Thermométrie et Barométrie Géologiques (Lagache, M., editor). SocietéFrancaise Minéralogie et de Cristallographie, Paris.Google Scholar
Li, G., Peacor, D.R., Buseck, P.R. & Árkai, P. (1998) Modification of illite-muscovite crystallite size distributions by sample preparation for powder XRD analysis. The Canadian Mineralogist, 36, 14351451.Google Scholar
Merriman, R.J. & Peacor, D.R. (1999) Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. Pp. 1060 in: Low-grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Science, Oxford, UK.Google Scholar
Merriman, R.J., Roberts, B. & Peacor, D.R. (1990) A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, U.K.Contributions to Mineralogy and Petrology, 106, 2740.CrossRefGoogle Scholar
Merriman, R.J., Roberts, B., Peacor, D.R. & Hirons, S.R. (1995) Strain-related differences in the crystal growth of white mica and chlorite: a TEM and XRD study of the development of metapelite microfabrics in the Southern Uplands thrust terrane, Scotland. Journal of Metamorphic Geology, 13, 559576.CrossRefGoogle Scholar
Peacor, D.R. (1992) Diagenesis and low-grade metamorphism of shales and slates. Pp. 335380 in. Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy (Buseck, P.R., editor). Reviews in Mineralogy, 27, Mineralogical Society of America, Washington, D.C.Google Scholar
Plançon, A. & Zacharie, C. (1990) An expert system for the structural characterization of kaolinites. Clay Minerals, 25, 249260.Google Scholar
Środoń, J., Elsass, F., McHardy, W.J. & Morgan, D.J. (1992) Chemistry of illite-smectite inferred from TEM measurements of fundamental particles. Clay Minerals, 27, 137158.Google Scholar
Warr, L.N. & Nieto, F. (1998) Crystallite thickness and defect density of phyllosilicates in low-temperature metamorphic pelites: a TEM and XRD study of clay mineral crystallinity-index standards. The Canadian Mineralogist, 36, 14531474.Google Scholar
Warr, L.N. & Rice, A.H.N. (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141152.Google Scholar
Watanabe, T. (1988) The structural model of illite/ smectite interstratified minerals and the diagram for its identification. Clay Science, 7, 97114.Google Scholar
Weaver, E.W. (1960) Possible uses of clay minerals in search for oil. Bulletin of the American Association of Petroleum Geologists, 44, 15051518.Google Scholar
Weber, F., Dunoyer de Segonzac, G. & Economou, C. (1976) Une nouvelle expression de la ‘crystallinité’ de l’illite et des micas. Notion d’epaisseur des cristallites. Compte Rendu Sommaire de Seances de la SocietéGéologique de France, 5, 225227.Google Scholar
Weber, K. (1972) Notes on the determination of illite crystallinity. Neues Jahrbuch für Mineralogie, Monatshefte, 267276.Google Scholar