Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T08:47:47.610Z Has data issue: false hasContentIssue false

Significance of random illite-vermiculite mixed layers in Pleistocene sediments of the northwestern Atlantic Ocean

Published online by Cambridge University Press:  09 July 2018

P. Vanderaveroet*
Affiliation:
Sédimentologie et Géodynamique, UMR 8577 CNRS, SN5, Université de Lille I, 59655 Villeneuve d'Ascq Cedex, France
V. Bout-roumazeilles
Affiliation:
Sédimentologie et Géodynamique, UMR 8577 CNRS, SN5, Université de Lille I, 59655 Villeneuve d'Ascq Cedex, France
N. Fagel
Affiliation:
Clay and Mineralogy Department, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
H. Chamley
Affiliation:
Sédimentologie et Géodynamique, UMR 8577 CNRS, SN5, Université de Lille I, 59655 Villeneuve d'Ascq Cedex, France
J. F. Deconinck
Affiliation:
Sédimentologie et Géodynamique, UMR 8577 CNRS, SN5, Université de Lille I, 59655 Villeneuve d'Ascq Cedex, France

Abstract

The clay mineralogy of Pleistocene sediments of eleven sediment cores at three ODP sites from 30°N to 60°N northwestern Atlantic Ocean has been investigated. The sediments are characterized by the presence of random illite-vermiculite mixed layers (I-V) (up to 32% of the clay mineral assemblage). The I-V clays are much more abundant during interglacial periods than during glacial ones. They are attributed to detrital supply through erosion of high-latitude continental areas from which they are derived mainly from chemical weathering of micaceous phyllosilicates. Their spatial distribution and the specific conditions for their formation through weathering suggest that I-V mixed layers are mainly derived from the Canadian Shield. They were transported from their source to marine deposition areas by rivers, deep water masses or nepheloid layers. Due to the specific conditions required for the formation of I-V, its occurrence and abundance are used as a palaeoclimate and palaeocirculation proxy for northwestern Atlantic Pleistocene sediment.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

April, R.H., Hluchy, M.M. & Newton, R.M. (1986) The nature of vermiculite in Adirondack soils and till. Clays Clay Miner. 34, 549556.Google Scholar
Argast, S. (1991) Chlorite vermiculitization and pyroxene etching in an aeolian periglacial sand dune, Allen County, Indiana. Clays Clay Miner. 39, 622633.Google Scholar
Berry, R.W. & Johns, W. (1966) Mineralogy of the claysize fractions of some North Atlantic Arctic Ocean bottom current. Geol. Soc. Am. Bull. 77, 183196.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic ocean and adjacent sea and oceans. Geol. Soc. Am. Bull. 76, 803831.Google Scholar
Biscaye, P.E. & Eittreim, S.L. (1974) Variations in benthic boundary layers phenomenon: Nepheloid layers in the North American Basin. Pp. 227260.in: Suspended Solids in Water (Gibbs, R.J., editor). Plenum Press, New York.Google Scholar
Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschick, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonami, G. & Ivy, S. (1992) Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period. Nature, 360, 245249.Google Scholar
Bout-Roumazeilles, V. (1995) Relations entre variabilités minéralogiques et climatiques enregistrées dans les sédiments de l’Atlantique Nord pendant les huit derniers stades glaciaires-interglaciaires. Thesis, Univ. Lille I, France.Google Scholar
Bout-Roumazeilles, V., Debrabant, P., Labeyrie, L., Chamley, H. & Cortijo, E. (1997) Latitudinal control on astronomical forcing parameters on the highresolution clay mineral distribution in the 45° –60°Nrange in the North Atlantic Ocean during the past 300,000 years. Paleoceanography, 12, 671686.CrossRefGoogle Scholar
Brown, G. & Brindley, G.W. (1980) X-ray diffraction procedures for clay mineral identification. Pp. 305359.in. Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society, Monograph, 5, London.Google Scholar
Cassat, G. (1979) X-ray mineralogy from Holes 399, 400, 400A, 401, 402, and 402A of Bay of Biscay. Pp. 649663.in. Init. Repts. DSDP, 48 (Montadert, L., Roberts, D.G. et al., editors). U.S. Govt. Printing Office, Washington D.C. Google Scholar
Chamley, H. (1979) North Atlantic clay sedimentation and paleoenvironment since the late Jurassic. Pp. 342361.in: Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment (Talwani, M., Hay, W. & Ryan, W.B.F., editors). Am. Geophysical Union.Google Scholar
Chamley, H. & Debrabant, P. (1989) Diagenèse d’enfouissement et diagenèse thermique. Effets sur les silicates argileux. C. R. Acad. Sci. Paris, 308, 389394.Google Scholar
Chamley, H., Debrabant, P., Foulon, J., Giroud d’Argoud, G., Latouche, C., Maillet, N., Maillot, H. & Sommer, F. (1979) Mineralogy and geochemistry of Cretaceous and Cenozoic Atlantic sediments off the Iberian Peninsula (Site 398, DSDP Leg 47B). Pp. 429449.in. Init. Repts. DSDP, 47, Part 2 (Sibuet, J.C., Ryan, W.B.F. et al., editors). U.S. Govt. Printing Office, Washington D.C. Google Scholar
Chamley, H., Giroud d’Argoud, G. & Robert, C. (1980) Clay mineralogy of Cretaceous and Cenozoic sediments off the Moroccan margin, Deep Sea Drilling Project Sites 415 and 416. Pp. 715723.in. Init. Repts. DSDP, 50 (Lancelot, Y., Winterer, E.L. et al., editors). U.S. Govt. Printing Office, Washington D.C. Google Scholar
Chamley, H., Debrabant, P., Candillier, A.M. & Foulon, J. (1983) Clay mineralogical and inorganic geochemical stratigraphy of Blake-Bahama Basin since the Callovian, Site 534, Deep Sea Drilling Project Leg 76. Pp. 437451.in. Init. Repts. DSDP, 76 (Sheridan, R.E., Gradstein, F.M. et al., editors). U.S. Govt. Printing Office, Washington D.C. Google Scholar
Darby, D.A. (1990) Evidence for the Hudson River as the dominant source of sand on the US Atlantic Shelf. Nature, 346, 828831.Google Scholar
Deconinck, J.F. & Vanderaveroet, P. (1996) Eocene to Pleistocene clay mineral sedimentation off New Jersey, Western North Atlantic (ODP Leg 150, sites 903 and 905). Pp. 147170.in. Proc. ODP, Sci. Results, 150 (Mountain, G.S., Miller, K.G., Blum, P., Poag, C.W. & Twichell, D.C., editors). College Station, TX (Ocean Drilling Program).Google Scholar
Dunn, D.A., Patrick, D.M. & Jr.Cooley, U. (1987) Cenozoic clay mineralogy of Sites 604 and 605, New Jersey Transect, Deep Sea Drilling Project Leg 93. Pp. 10231037.in. Init. Repts. DSDP, 93 (van Hinte, J.E., Jr.Wise, S.W., et al., editors). U.S. Govt. Printing Office, Washington D.C. Google Scholar
Fagel, N., Robert, C. & Hillaire-Marcel, C. (1996) Clay mineral signature of the NW Atlantic Boundary Undercurrent. Mar. Geol. 130, 1928.Google Scholar
Farmer, V.C, Russell, J.D., McHardy, W.J., Newman, A.C.D., Ahlrichs, J.L. & Rimsaite, J.Y.H. (1971) Evidence for loss of protons and octahedral iron from oxidized biotites and vermiculites. Mineral. Mag. 38, 121137.Google Scholar
Flood, R. (1978) X-ray mineralogy of DSDP Legs 44 and 44A, Western North Atlantic: lower continental Rise Hills, Blake Nose, and Blake-Bahama Basin. Pp. 515521.in. Init. Repts. DSDP, 44 (Benson, W.E., Sheridan, R.E. et al., editors). U.S. Govt. Printing Office, Washington D.C. Google Scholar
Groot, J.J., Benson, R.N. & Weymiller, J.F. (1995) Palynological, foraminiferal, and aminostratigraphic studies of Quaternary sediments from the U.S. Middle Atlantic upper continental slope, continental shelf and coastal plain. Quat. Sci. Rev. 14, 1749.Google Scholar
Grousset, F.E. & Biscaye, P.E. (1989) Nd and Sr isotopes as tracers of wind transport: Atlantic aerosols and surface sediments. Pp . 385400.in : Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport (Leinen, M. & Sarnthein, M., editors). Kluwer Academic Publishers, Norwell, Mass.CrossRefGoogle Scholar
Grousset, F.E., Labeyrie, L., Sinko, J.A., Cremer, M., Bond, G., Duprat, J., Cortijo, E. & Huon, S. (1993) Patterns of ice-rafted detritus in the Glacial North Atlant ic (408 – 558N). Paleoce anogra phy, 8, 175192.Google Scholar
Harris, W.G., Morrone, A.A. & Coleman, S.E. (1992) Occluded mica in hydroxy-interlayered vermiculite grains from a highly-weathered soil. Clays Clay Miner. 40, 3239.Google Scholar
Hathaway, J.C. (1972) Regional clay mineral facies in estuaries and continental margin of the United States east coast. Geol. Soc. Am. Mem. 133, 293316.Google Scholar
Heezen, B.C., Hollister, C.D. & Ruddiman, W.F. (1966) Shaping of continental rise by deep geostrophic contour currents. Science, 152, 502508.Google Scholar
Hillaire-Marcel, H., De Vernal, A., Vallières, S. et al. (1991) Cruise report and on-board studies, CSS Hudson 91-045, the Labrador Sea, the Irminger and Iceland basins. Geol. Surv. Can., Open file.Google Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L. & Shackleton, N.J. (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine d18O record. Pp. 269305.in: Milankovitch and Climate (Berger, A., Imbrie, J. et al., editors). Reidel, Dordrecht, The Netherlands.Google Scholar
Koch, R. & Rothe, P. (1979) X-ray mineralogy studies – Leg 43. Pp. 10191041.in. Init. Repts. DSDP, 43 (Tucholke, B.E., Vogt, P.R. et al., editors). U.S. Govt. Printing Office, Washington D.C. Google Scholar
Lancelot, Y. Hathaway, J.C. & Hollister, C.D. (1972) Lithology of the sediments from the western North Atlantic, Leg 11, Deep Sea Drilling Project. Pp. 901949.in: Init. Repts. DSDP (Hollister, C.D., Ewing, J.I. et al., editors). U.S. Govt. Printing Office, Washington D.C. Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. & Shackleton, N.J. (1987) Age dating and the orbital theory of ice-ages: development of high resolution 0 to 300,000-year chronostratigraphy. Quat. Res. 27, 129.CrossRefGoogle Scholar
McCartan, L. (1988) Geology and paleontology of the Haynesville Cores Northeastern Virginia coastal plain. U.S. Geol. Surv. Prof. Pap. 1489.Google Scholar
McCave, I.N. & Tucholke, B.E. (1986) Deep currentcontrolled sedimentation in the western North Atlantic. Pp. 451468.in: The Geology of North America (Vol. M): The Western North Atlantic Region (Vogt, P.R. & Tucholke, B.E., editors). Geological Society of America, Washington D.C. Google Scholar
Miller, K.G., Browning, J.V., Liu, C., Sugarman, P.J., Kent, D.V., Van Fossen, M., Queen, D., Goss, M., Gwynn, D., Mullikin, L., Feigenson, M.D., Aubry, M.P. & Burckle, L.D. (1994) Atlantic City Report. Pp. 3555.in. Proc. ODP, Init. Repts., 150X. College Station, TX (Ocean Drilling Program).Google Scholar
Mountain, G.S., Miller, K.G., Blum, P. et al. (1994) Proc. ODP, Init. Repts., 150. College Station, TX (Ocean Drilling Program).Google Scholar
Petersen, L. & Rasmussen, K. (1980) Mineralogical composition of the clay fraction of the two fluvioglacial sediments from East Greenland. Clay Miner. 15, 135145.CrossRefGoogle Scholar
Poag, C.W. (1992) U.S. Middle Atlantic Continental Rise: Provenance, dispersal, and deposition of Jurassic to Quaternary sediments. Pp. 100156.in: Geologic Evolution of Atlantic Continental Rises (Poag, C.W. & de Graciansky, P.C., editors). Van Nostrand Reinhold, New York.Google Scholar
Poag, C.W. & Sevon, W.D. (1989) A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the U.S. middle Atlantic margin. Geomorphology, 2, 119157.Google Scholar
Rich, C.I. (1968) Hydroxy interlayers in expansible layer silicates. Clays Clay Miner. 16,1530.CrossRefGoogle Scholar
Robert, C. (1992) Late Eocene–early Oligocene evolution of climate and marine circulation: deep-sea clay mineral evidence. The Antarctic paleoenvironment: a perspective on global change. Antarctic Res. series, 56, 97117.Google Scholar
Saito, Y. (1996) Grain-size and sediment-color variations of Pleistocene slope sediments off New Jersey. Pp. 229239.in. Proc. ODP, Sci. Results, 150 (Mountain, G.S., Miller, K.G., Blum, P., Poag, C.W. & Twichell, D.C., editors). College Station, TX (Ocean Drilling Program).Google Scholar
Thiébault, F., Cremer, M., Debrabant, P., Foulon, J., Nielsen, O.B. & Zimmerman, H. (1989) Analysis of sedimentary facies, clay mineralogy, and geochemistry of the Neogene-Quaternary sediments in site 645, Baffin Bay. Pp. 83100.in. Proc. ODP, Sci. Results, 105 (Srivastava, S.P., Arthur, M.A., Clement, B. et al. , editors). College Station, TX (Ocean Drilling Program).Google Scholar
Vanderaveroet, P. (1996) Contrôle climatique de la sédimentation argileuse cénozoïque sur la marge passive du New Jersey. Thesis, Univ. Lille I, France.Google Scholar
Vanderaveroet, P. & Deconinck, J.F. (1997) Clay mineralogy of Cenozoic sediments of the Atlantic City Borehole, New Jersey, Leg ODP 150X. Pp. 4957 in: Proc. ODP, Sci. Results, 150X (Miller, K.G. & Snyder, S.W., editors). College Station, TX (Ocean Drilling Program).Google Scholar
Vanderaveroet, P., Averbuch, O., Deconinck, J.F. & Chamley, H. (1999) A record of glacial/ interglacial alternations in Pleistocene sediments off New Jersey expressed by clay mineral, grain-size and magnetic susceptibility data. Mar. Geol. 159, 7992.CrossRefGoogle Scholar
Vogt, P.R. & Tucholke, B.E. (1989) North Atlantic Ocean basin; aspects of geologic structure and evolution. Pp. 5380.in: The Geology of North America (Vol. A): The Geology of North America – an overview (Bailey, A.W. & Palmer, A.R., editors). Geological Society of America, Washington D.C. Google Scholar
Yang, C. & Hesse, R. (1991) Clay minerals as indicators of diagenetic and anchimetamorphic grade in an overthrust belt, external domain of Southern Canadian Appalachians. Clay Miner. 26, 211231.CrossRefGoogle Scholar