Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T14:18:15.508Z Has data issue: false hasContentIssue false

Solid-state NMR study of modified clays and polymer/clay nanocomposites

Published online by Cambridge University Press:  09 July 2018

J. Grandjean*
Affiliation:
University of Liege, Institute of Chemistry B6a, COSM, Sart-Tilman, B-4000 Liege

Abstract

Intercalation of surfactant and polymer chains between the clay platelets gives rise to molecular ordering that changes both the chain conformation and mobility with respect to the bulk phase. As a local probe, nuclear magnetic resonance is particularly suited for such investigations, and this review reports the main results obtained in the solid state. The properties of the modified clays are studied as a function of the surfactant loading, the nature of the head group, and the length of the hydrocarbon chain(s). The structure and charge of the mineral also influence the behaviour of molecules in the gallery space. Among papers on polymer/clay nanocomposites, those dealing with poly(ethylene oxide) have been studied in particular, using a multinuclear approach. Natural clays often contain paramagnetic species such as Fe(III) that perturb the nuclear magnetic resonance (NMR) relaxation processes and can prevent observation of appropriate NMR data. Accordingly, most organic/clay hybrids are studied with hectorite or synthetic smectites. However, the paramagnetic effect has also been found useful in characterizing clay dispersion within the polymer matrix of the nanocomposites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alba, M.D, Castro, M.A, Naranjo, M. & Perdigôn, A.C (2004) Structural localization of Al3+ ions in aluminosilicates: application to heteronuclear chemical shift correlation to 2:1 silicates. Physics and Chemistry of Minerals, 31, 195—202.Google Scholar
Alexandre, M. & Dubois, P. (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering, 28, 1—63.Google Scholar
Amoureux, J.-P. & Pruski, M. (2002) Theoretical and experimental assessment of single- and multiplequantum polarization in solid-state NMR. Molecular Physics, 100, 1595—1613.CrossRefGoogle Scholar
Aranda, P. & E., Ruiz-Hitzky (1992) Polyethylene oxide)/silicate intercalation materials. Chemistry of Materials, 4, 1395—1403.CrossRefGoogle Scholar
Asano, A., Shimizu, M. & Kurotsu, T. (2004) Effect of paramagnetic Fe3+on T 1 H in PVA/montmorilloniteclay nanocomposites. Chemistry Letters, 33, 816—817.CrossRefGoogle Scholar
Bank, S. & Ofori-Oki, G. (1992) Solid-state reaction of phenethylammonium chloride and Al-exchanged clays as followed by cross-polarization/magic angle spinning nuclear magnetic resonance spectroscopy. Langmuir, 8, 1688—1689.Google Scholar
Beall, G.W (2003) The use of organo-clay in water treatment. Applied Clay Science, 24, 1120.CrossRefGoogle Scholar
Bourbigot, S., VanderHart, D.L, Gilman, J.W, Awad, W.H, Davis, R.D, Morgan, A.B & Wilkie, C.A (2003) Investigation of nanodispersion in polystyrene- montmorillonite nanocomposites by solid-state NMR. Journal of Polymer Science: Part B: Polymer Physics, 41, 3188—3213.CrossRefGoogle Scholar
Bourbigot, S., VanderHart, D.L, Gilman, J.W, Ballayer, S., Stretz, H. & Paul, D.R (2004) Solid-state NMR characterization and flammability of styrene-acrylonitrile copolymer montmorillonite nanocomposite. Polymer, 45, 7627—7638.Google Scholar
C, Calberg, Jérôme, R. & Grandjean, J. (2004) Solid-state NMR study of poly(s-caprolactone)/clay nanocomposites. Langmuir, 20, 2039—2041.Google Scholar
Carrado, K.A, Xu, L., Gregory, D.M, Song, K., Seifert, S. & Botto, R.E (2000) Crystallization of a layered silicate clay as monitored by small-angle X-ray scattering and NMR. Chemistry of Materials, 12, 3052—3059.Google Scholar
Chen, H.-W., Lin, T.-P. & Chang, F.-C. (2002) Ionic conductivity enhancement of the plasticized PMMA/ LiC104 polymer nanocomposite electrolyte containing clay. Polymer, 43, 5281—5288.Google Scholar
Cornejo, J., Celis, R., Cox, L. & Hermosin, M.C (2004) Pesticide-clay interactions and formulations. Pp. 247—266.in: Clay Surfaces: Fundamentals and Applications (Wypych, E. & Satyanarayana, K.G., editors). Elsevier, Amsterdam, The Netherlands.Google Scholar
Delevoye, L., Robert, J.-L. & Grandjean, J. (2003) 23Na 2D 3QMAS NMR and 29Si, 27A1 MAS NMR investigation of Laponite and synthetic saponites of variable interlayer charge. Clay Minerals, 38, 63—69.CrossRefGoogle Scholar
P., Di Leo & Cuadros, J. (2003) 113Cd, 1H MAS NMR and FTIR analysis of Cd+ adsorption on dioctahedral and trioctahedral smectites. Clays and Clay Minerals, 51, 403—414.Google Scholar
Duer, M.J (2004) Introduction to Solid-state NMR Spectroscopy. Blackwell Science, Oxford, UK. Google Scholar
Ejeckam, R.B & Sherriff, B.L (2005) A 133Cs, 29Si, and 27Al MAS NMR spectroscopic study of Cs adsorption by clay minerals: Implications for the disposal of nuclear wastes. The Canadian Mineralogist, 43, 1131—1140.Google Scholar
Forte, C, Geppi, M., Giamberini, S., Giacomo, R., Veracini, A. & Mendez, B. (1998) Structure determination of clay/methymethacrylate copolymer interlayer complexes by means of 13C solid-state NMR. Polymer, 39,2651—2656.Google Scholar
Goddard, Y.A, Void, R.L & Hoatson, G.L (2003) Deuteron NMR study of polyaniline and polyaniline/ clay nanocomposite. Macromolecules, 36, 1162—1169.Google Scholar
Gougeon, R.D, Rheinholdt, M., Delmotte, L., Miehé- Brendlé J., Chézeau, J.-M., Le Dred, R., Marchai, R. & Jeandet, P. (2002) Direct observation of polylysine side-chain interaction with smectites interlayer surfaces through 1H-27Al heteronuclear correlation NMR spectroscopy. Langmuir, 18, 3396—3398.Google Scholar
Gougeon, R.D, Rheinholdt, M., Delmotte, L., Miehé- Brendlé J., Chézeau, J.-M., Le Dred, R., Marchai, R. & Jeandet, P. (2003) Polypeptide adsorption on a synthetic montmorillonite: A combined solid-state NMR spectroscopy, X-ray diffraction, thermal analysis and N2 adsorption study. European Journal of Inorganic Chemistry, 1366—1372.Google Scholar
Gougeon, R.D, Rheinholdt, M., Delmotte, L., Miehé- Brendlé J., Chézeau, J. & Jeandet, P. (2006) Solidstate NMR investigation on the interactions between a synthetic montmorillonite and two homopolypeptides. Solid State Nuclear Magnetic Resonance, 29, 322—329.CrossRefGoogle ScholarPubMed
Grandjean, J. (1998) NMR studies of interfacial phenomena. Annual Reports on NMR Spectroscopy, 35, 217—260.Google Scholar
Grandjean, J. (2004) NMR spectroscopy of molecules and ions at clay surfaces. Pp. 216—246.in: Clay Surfaces: Fundamentals and Applications (Wypych, E. & Satyanarayana, K.G., editors). Elsevier, Amsterdam, The Netherlands.Google Scholar
Grandjean, J., Bujdak, J. & Komadel, P. (2003) NMR study of surfactant molecules intercalated in montmorillonite and in silylated montmorillonite. Clay Minerals, 38, 367—373.CrossRefGoogle Scholar
Hanaya, M. & Harris, R.K (1998) Two-dimensional 23Na MQ MAS NMR study of layered silicates. Journal of Material Chemistry, 8, 1073—1079.Google Scholar
Harris, D.J, Bonagamba, T.J & Schmidt-Rohr, K. (1999) Conformation of poly(ethylene oxide) intercalates in clay and MoS2 studied by two-dimensional doublequantum NMR. Macromolecules, 32, 6718—6724.Google Scholar
He, H., Frost, R.L, Deng, F., Zhu, J., Wen, X. & Yuan, P. (2004) Conformation of surfactant molecules in the interlayer of montmorillonite, studied by 13C MAS NMR. Clays and Clay Minerals, 52, 350—356.Google Scholar
L., Heller-Kallai (2002) Clay catalysis in reactions of organic matter. Pp. 567614 in: Organo-Clay Complexes and Interactions (Yariv, S. & Cross, H., editors). Marcel Dekker Inc., New York, USA.Google Scholar
Hou, S.S & Schmidt-Rohr, K. (2003) Polymer-clay nanocomposites from directly micellized polymer/ toluene in water and their characterization by WAXD and solid-state NMR spectroscopy. Chemistry of Materials, 15, 1938—1940.Google Scholar
Hou, S.S, Beyer, F.L & Schmidt-Rohr, K. (2002) Highsensitivity multinuclear NMR spectroscopy of a smectite clay and of clay-intercalated polymer. Solid State Nuclear Magnetic Resonance, 22, 110—127.Google Scholar
Hou, S.S, Bonagamba, T.J, Beyer, F.L, Madison, P.H & Schmidt-Rohr, K. (2003) Clay intercalation of poly(styrene-ethylene oxide) block copolymers studied by two-dimensional solid-state NMR. Macromolecules, 36, 2769—2776.CrossRefGoogle Scholar
Hrobarikova, J., Robert, J.-L., Calberg C, Jerome, R. & Grandjean, J. (2004) Solid-state NMR study of intercalated species in poly(e-caprolactone)/clay nanocomposites. Langmuir, 20, 9828—9833.Google Scholar
Ishimaru, S., Yamauchi, M. & Ikeda, R. (1998) Dynamics of interlayer cations in tetramethylammonium-saponite studied by 1H, 2H NMR and electrical conductivity measurements. Zeitschrift fur Naturforschung, 53a, 903—908.Google Scholar
Jerschow, A. (2005) From nuclear structure to quadrupolar NMR interaction and high-resolution spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 46, 63—78.Google Scholar
Khatib, K., François, M., Tekely, P., Michot, L.J, Bottero, J.Y & Baudin, I. (1996) Immersion microcalorimetry and 13C CP MAS NMR study of the structure of organoclays. Journal of Colloids and Interface Science, 183, 148—154.Google Scholar
Kolodziejski, W. & Klinowski, J. (2002) Kinetics of cross-polarization in solid-state NMR: A guide for chemists. Chemical Reviews, 102, 613—628.CrossRefGoogle ScholarPubMed
Krzaczkowska, J., Fojud, Z., Kozak, M. & Jurga, S. (2005) Spectroscopic studies of poly(e-caprolactone)/sodium montmorillonite nanocomposites. Acta Physica Polonica A, 108, 187—196.Google Scholar
Kubies, D., Jerome, R. & Grandjean, J. (2002) Surfactant molecules intercalated in Laponite as studied by 13C and 29Si MAS NMR. Langmuir, 18, 6159—6163.Google Scholar
Kwiatkowski, J. & Whittaker, A.K (2001) Molecular motion in nanocomposites of poly(ethylene oxide) and montmorillonite. Journal of Polymer Science: PartB: Polymer Physics, 39, 1678—1685.Google Scholar
Lagaly, G. (1986) Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22, 43—51.Google Scholar
Laws, D.D, Bitter, H.-M. & Jerschow, A. (2002) Solidstate NMR spectroscopic methods in chemistry. Angewandte Chemie International Edition, 41, 3096—3129.Google Scholar
Levin, E.M, Hou, S.-S., Bud'ko, S.L & Schmidt-Rohr, K. (2004) Magnetism and nuclear magnetic resonance of hectorite and montmorillonite layered silicates. Journal of Applied Physics, 96, 5085—5092.Google Scholar
Li, Y. & Ishida, H. (2003) Characterization-dependent conformation of alkyl tail in the nanoconfined space: Hexadecylamine in the silicate galleries. Langmuir, 19, 2479—2484.Google Scholar
Lôpez-Galindo, A. & Viseras, C. (2004) Pharmaceutical and cosmetic applications of clays. Pp. 267—279.in: Clay Surfaces: Fundamentals and Applications (Wypych, E. & Satyanarayana, K.G., editors). Elsevier, Amsterdam, The Netherlands.Google Scholar
Lorthioir, C, Sulpice-Gaillet, C, Lauprêtre, F., Soulestin, J., Gloaguen, J.-M. & Lefebvre, J.-M. (2005) Bulk organization and chain dynamics in poly(ethylene oxide)/Laponite and poly(methyl methacrylate)/ poly(ethylene oxide)/Laponite nanocomposites: Solid-state NMR investigations. 8th European Symposium on Polymer Blends and Eurofillers 2005 (Joint Meeting), Bruges, Belgium.Google Scholar
Manias, E., Hadziionnanou, G. & Brinke, G. (1996) Inhomogeneities in sheared ultra thin lubricating films. Langmuir, 12, 4587—4593.Google Scholar
Mathias, L.J, Davis, R.D & Jarrett, W.L (1999) Observation of a an. y crystal forms and amorphous regions of nylon—6.clay nanocomposites using solidstate 15N nuclear magnetic resonance. Macromolecules, 32, 7958—7960.Google Scholar
Meier, L.P, Nueesch, R. & Madsen, F.T (2001) Organic pillared clays. Journal of Colloid and Interface Science, 238, 24—32.Google Scholar
Michot, L.J & Villiéras, F. (2002) Assessment of surface energetic heterogeneity of synthetic Na-saponites. The role of the clay charge. Clay Minerals, 37, 39—57.Google Scholar
Mirau, P.A, Vaia, R.A & Garber, J. (2005) NMR characterization of the structure and dynamics of polymer interfaces in clay nanocomposites. Polymer Preprints, 46, 440—441.Google Scholar
Moronta, A. (2004) Catalytic and adsorption properties in modified clay surfaces. Pp. 321344 in: Clay Surfaces: Fundamentals and Applications (Wypych, E. & Satyanarayana, K.G., editors). Elsevier, Amsterdam, The Netherlands.Google Scholar
Mtiller, R., Hrobarikova, J., Calberg C, Jérôme, R. & Grandjean, J. (2004) Structure and dynamics of cationic surfactants intercalated in synthetic clays. Langmuir, 20, 2982—2985.Google Scholar
Ohkubo, T., Saito, K., Kanehashi, K. & Dceda, Y. (2004) A study on hydration behaviours of interlayer cations in montmorillonite by solid-state NMR. Science and Technology of Advanced Materials, 5, 693—696.CrossRefGoogle Scholar
Osman, M.A, Ernst, M., Meier, B.H & Suter, U.W (2002) Structure and molecular dynamics of alkane monolayers self-assembled on mica platelets. Journal of Physical Chemistry B, 106, 653—662.CrossRefGoogle Scholar
Osman, M.A, Ploetze, M. & Skrabal, P. (2004) Structure and properties of alkylammonium monolayers selfassembled on montmorillonite platelets. Journal of Physical Chemistry B, 108, 2580—2588.CrossRefGoogle Scholar
Permien, T. & Lagaly, G. (1995) The rheological and colloidal properties of bentonites dispersions in the presence of organic V.compounds Bentonite and sodium montmorillonite and surfactants. Clays and Clay Minerals, 43, 229—236.Google Scholar
Pratum, T.K (1992) A solid-state 13C NMR study of tetraalkylammonium/clay complexes. Journal of Physical Chemistry, 96, 4567—4571.Google Scholar
Reinholdt, M.X, Kirkpatrick, R.J & Pinnavaia TJ. (2005) Montmorillonite-poly(ethylene oxide) nanocomposites: Interlayer alkali metal behaviour. Journal of Physical Chemistry B, 109, 16296—16303.Google Scholar
T., Rheinlânder, Klumpp, E. & Schwuger, M.J (1998) On the adsorption of hydrophobic pollutants on surfactant/ clay complexes: comparison of the influence of a cationic and a non-ionic surfactant. Journal of Dispersion Science and Technology, 19, 379—398.Google Scholar
Rocha, J., Morais CM. & Fernandez, C. (2003) Novel nuclear magnetic resonance techniques for the study of quadrupolar nuclei in clays and other layered materials. Clay Minerals, 38, 259—278.Google Scholar
Sahoo, S.K, Kim, D.W, Kumar, J., Blumstein, A. & Cholli, A.L (2003) Nanocomposite from in-situ polymerization of substituted polyacetylene within the lamellar surface of the montmorillonite: A solidstate NMR study. Macromolecules, 36, 2777—2784.Google Scholar
Sanz, J. & Serratosa, J.M (2002) NMR spectroscopy of organo-clay complexes. Pp. 223272 in: Organo- Clay Complexes and Interactions (Yariv, S. & Cross, H., editors). Marcel Dekker Inc., New York, USA.Google Scholar
Sugahara, Y., Satokawa, S., Kuroda, K. & Kato, C. (1990) Preparation of a kaolinite-polyacrylamide intercalation compound. Clays and Clay Minerals, 38, 137—143.Google Scholar
Tkâc, I., Komadel, P. & Mûller, D. (1994) Acid-treated montmorillonites A study by 29Si and 27A1 MAS NMR. Clay Minerals, 29, 11—19.Google Scholar
Tunney, J.J & Detellier, C. (1996) Aluminosilicate nanocomposite materials. Poly(ethylene glycol) kaolinite intercalates. Chemistry of Materials, 8, 927—935.Google Scholar
Urbanczyk, L., Hrobarikova, J., Robert, J.-L., Calberg, C, Jerome, R. & Grandjean, J. (2006) Motional heterogeneity of intercalated species in modified clays and poly(s-caprolactone)/clay nanocomposites. Langmuir, 22, 4818—4824.Google Scholar
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Kurauchi, T. & Kamigaito, O. (1995) Interaction of nylon 6 clay surface and mechanical properties of nylon 6 hybrid. Journal of Applied Chemistry, 55, 119—123.Google Scholar
Vaia, R.A, Teukolsky, R.K & Giannelis, E.P (1994) Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials, 6, 1017—1022.CrossRefGoogle Scholar
VanderHart, D.L, Asano, A. & Gilman, J.W (2001a) Solid-state NMR investigation of paramagnetic nylon—6.clay nanocomposites 1. Crystallinity, Morphology, and the direct influence of Fe3+ on nuclear spins. Chemistry of Materials, 13, 3781—3795.Google Scholar
VanderHart, D.L, Asano, A. & Gilman, J.W (2001b) Solid-state NMR investigation of paramagnetic nylon—6.clay nanocomposites 2. Measurement of clay dispersion, crystal stratification, and stability of organic modifiers. Chemistry of Materials, 13, 3796—3809.Google Scholar
VanderHart, D.L, Asano, A. & Gilman, J.W (2001c) NMR measurements related to the clay-dispersion quality and organic-modifier stability in nylon—6.clay nanocomposites. Macromolecules, 34, 3819—3822.CrossRefGoogle Scholar
Vantelon, D., Montarges-Pelletier, E., Michot, L.J, Briois, V., Pelletier, M. & Thomas, F. (2003) Iron distribution in the octahedral sheet of dioctahedral smectites. An Fe K-edge X-ray absorption spectroscopy study. Physics and Chemistry of Minerals, 30, 44—53.Google Scholar
Volzone, C. (2004) Removal of metals by naturals and modified clays. Pp. 290320 in: Clay Surfaces: Fundamentals and Applications (Wypych, E. & Satyanarayana, K.G., editors). Elsevier, Amsterdam, The Netherlands. Google Scholar
Wang, L.-Q., Liu, J., Exarhos, G.J, Flanigan, K.Y & Bordia, R. (2000) Conformational heterogeneity and mobility of surfactant molecules in intercalated clay minerals studied by solid-state NMR. Journal of Physical Chemistry B, 104, 2810—2816.Google Scholar
Wang, Z. & Pinnavaia, T.J (1998) Nanolayer reinforcement of elastomeric polyurethane. Chemistry of Materials, 10, 3769—3771.CrossRefGoogle Scholar
Wong, S. & Zax, D.B (1997) What do NMR line widths tell us? Dynamics of alkali cations in a PEO-based nanocomposite polymer electrolyte. Electrochimica Acta, 42, 3513—3518.Google Scholar
Wong, S., Vaia, R.A, Giannelis, E.P & Zax, D.B (1996) Dynamics in poly(ethylene oxide)-based nanocomposite polymer electrolyte probed by solid state NMR. Solid State Ionics, 86—88. 547—557.Google Scholar
Wu, J.H & Lerner, M.M (1993) Structural, thermal, and electrical characterization of layered nanocomposites derived from Na-montmorillonite and polyethers. Chemistry of Materials, 5, 835—838.Google Scholar
Yamauchi, M., Ishimaru, S. & Ikeda, R. (2000) Dynamics of n-octylammonium ions intercalated in saponite. Molecular Crystals and Liquid Crystals, 341, 315—320.Google Scholar
Yang, D.-K. & Zax, D.B (1999) Li+ dynamics in polymer nanocomposite: An analysis of dynamic line shapes in nuclear magnetic resonance. Journal of Chemical Physics, 110, 5325—5336.Google Scholar
Yang, D.-K. & Zax, D.B (2006) Multidimensional 2H NMR study of dynamical heterogeneity in polymer nanocomposites. Solid State Nuclear Magnetic Resonance, 29, 153—162.CrossRefGoogle ScholarPubMed
Yei, D.-R., Kuo, S.-W, Fu, H.-K & Chang, F.-C (2005) Enhanced thermal properties of PS nanocomposites formed from montmorillonite treated with a surfactant/ cyclodextrin inclusion complex. Polymer, 46, 741—750.Google Scholar
Zhao, Z., Tang, T., Qin, Y. & Huang, B. (2003) Relationship between the continually expanded interlayer distance of layered silicates and excess intercalation of cationic surfactants. Langmuir, 19, 9260—9265.Google Scholar