Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T08:08:51.588Z Has data issue: false hasContentIssue false

Sorption of Congo Red anionic dye on natural hydrotalcite and stichtite: kinetics and equilibrium

Published online by Cambridge University Press:  06 October 2022

Olga V. Nestroinaia
Affiliation:
Belgorod State National Research University, Belgorod, 308015, Russia
Irina G. Ryltsova
Affiliation:
Belgorod State National Research University, Belgorod, 308015, Russia
Maksim N. Yaprintsev
Affiliation:
Belgorod State National Research University, Belgorod, 308015, Russia
Evgeniya Yu. Nakisko
Affiliation:
Belgorod State National Research University, Belgorod, 308015, Russia
Evgeniy S. Seliverstov
Affiliation:
Belgorod State National Research University, Belgorod, 308015, Russia
Olga E. Lebedeva*
Affiliation:
Belgorod State National Research University, Belgorod, 308015, Russia

Abstract

The sorption properties of two layered minerals of the hydrotalcite supergroup – hydrotalcite and stichtite – were investigated with the aim of determining their kinetic parameters of sorption and their adsorption isotherm type. Pristine hydrotalcite and stichtite were characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive Х-ray analysis and laser diffraction analysis of the particle-size distribution. The ‘memory effect’ of the sorbents was examined after calcination at 650°C. Slight indications of reconstructed hydrotalcite were observed, while the stichtite dehydration–rehydration cycle was irreversible. The hydrotalcite and stichtite were used to remove Congo Red from the aqueous solution. The pseudo-second order kinetic model described the process adequately. Mixed external and internal diffusion was confirmed for both minerals. The sorption of Congo Red on stichtite fits the Langmuir model. Stichtite demonstrated a maximum adsorption capacity of 2.5 mmol g–1 at 35°C. Increasing temperature increased the adsorption rate of Congo Red on stichtite but did not affect the adsorption rate constant for hydrotalcite.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: M. Pospíšil

References

Ayawei, N., Angaye, S.S., Wankasi, D. & Dikio, E.D. (2015) Synthesis, characterization and application of Mg/Al layered double hydroxide for the degradation of Congo Red in aqueous solution. Open Journal of Physical Chemistry, 5. 58338.10.4236/ojpc.2015.53007CrossRefGoogle Scholar
Boid, G.E., Adamson, A.V. & Maiers, L.S. (1949) Chromatographic Methods of Separation of Ions. Khimiya, Moscow, Russia [in Russian].Google Scholar
Cavani, F., Trifiró, F. & Vaccari, A. (1991) Hydrotalcite-type anionic clays: preparation, properties and application. Catalysis Today, 11, 173301.CrossRefGoogle Scholar
Chilukoti, S. & Thangavel, T. (2019) Enhanced adsorption of Congo Red on microwave synthesized layered Zn–Al double hydroxides and its adsorption behaviour using mixture of dyes from aqueous solution. Inorganic Chemistry Communications, 100, 107117.10.1016/j.inoche.2018.12.027CrossRefGoogle Scholar
Chubar, N., Gilmour, R., Gerda, V., Mičušík, M., Omastova, M., Heister, K. et al. (2017) Layered double hydroxides as the next generation inorganic anion exchangers: synthetic methods versus applicability. Advances in Colloid and Interface Science, 245, 6280.CrossRefGoogle ScholarPubMed
Correcher, V. & Garcia-Guinea, J. (2018) Cathodo- and photoluminescence emission of a natural Mg–Cr carbonate layered double hydroxide. Applied Clay Science, 161, 127131.10.1016/j.clay.2018.04.022CrossRefGoogle Scholar
Damindarova, V.N., Ryl'tsova, I.G., Tarasenko, E.A., Wang, X. & Lebedeva, O.E. (2020) Tin-containing layered double hydroxides. Petroleum Chemistry, 60, 444450.CrossRefGoogle Scholar
Daza, C.E., Cabrera, C.R., Moreno, S. & Molina, R. (2010) Syngas production from CO2 reforming of methane using Ce-doped Ni-catalysts obtained from hydrotalcites by reconstruction method. Applied Catalysis A: General, 378, 125133.10.1016/j.apcata.2010.01.037CrossRefGoogle Scholar
de Castro, G.F., Ferreira, J.A., Eulálio, D., de Souza, S.J., Novais, S.V., Novais, R.F. et al. (2018) Layered double hydroxides: matrices for storage and source of boron for plant growth. Clay Minerals, 53, 7989.10.1180/clm.2018.6CrossRefGoogle Scholar
Evans, D.G. & Slade, R.C.T. (2006) Structural aspects of layered double hydroxides. Pp. 187 in Layered Double Hydroxides. Structure and Bonding, vol. 119 (Duan, X. & Evans, D.G., editors). Springer, Berlin, Germany.Google Scholar
Fan, G., Li, F., Evans, D.G. & Duan, X. (2014) Catalytic applications of layered double hydroxides: recent advances and perspectives. Chemical Society Reviews, 43, 70407066.10.1039/C4CS00160ECrossRefGoogle ScholarPubMed
Frost, R.L. & Erickson, K.L. (2004) Vibrational spectroscopy of stichtite. Spectrochimica Acta. Part A. Molecular and Biomolecular Spectroscopy, 60, 30013005.10.1016/j.saa.2004.02.014CrossRefGoogle ScholarPubMed
Goha, K.-H., Lima, T.-T. & Dong, Z. (2008) Application of layered double hydroxides for removal of oxyanions: a review. Water Research, 42, 13431368.10.1016/j.watres.2007.10.043CrossRefGoogle Scholar
Gunasekaran, S., Anbalagan, G. & Pandi, S. (2006) Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy, 37, 892899.CrossRefGoogle Scholar
Ho, Y.S. & McKay, G. (1999) Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451465.10.1016/S0032-9592(98)00112-5CrossRefGoogle Scholar
Hofmeister, A.M. & Bowey, J.E. (2006) Quantitative infrared spectra of hydro-silicates and related minerals. Monthly Notices of the Royal Astronomical Society, 367, 577591.10.1111/j.1365-2966.2006.09894.xCrossRefGoogle Scholar
Kloprogge, J.T., Wharton, D., Hickey, L. & Frost, R.L. (2002) Infrared and Raman study of interlayer anions CO2–3, NO3, SO2–4 and ClO4 in Mg/Al-hydrotalcite. American Mineralogist, 87, 623629.10.2138/am-2002-5-604CrossRefGoogle Scholar
Krivovichev, S.V., Yakovenchuk, V.N. & Zhitova, E.S. (2012) Natural double layered hydroxides: structure, chemistry, and information storage capacity. Pp. 87102 in: Minerals as Advanced Materials II (Krivovichev, S.V., editor). Springer, Berlin, Germany.10.1007/978-3-642-20018-2CrossRefGoogle Scholar
Lafi, R., Charradi, K., Djebbi, M. & Amara, A. (2016) Adsorption study of Congo Red dye from aqueous solution to Mg–Al-layered double hydroxide. Advanced Powder Technology, 27, 232237.10.1016/j.apt.2015.12.004CrossRefGoogle Scholar
Lagergren, S. (1898) About the theory of so-called adsorption of soluble substance. Kungliga Svenska Vetenskapsakademiens Handlingar, 21, 139.Google Scholar
Lei, C., Zhu, X., Zhu, B., Jiang, C., Le, Y. & Yu, J. (2017) Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions. Journal of Hazardous Materials, 321, 801811.10.1016/j.jhazmat.2016.09.070CrossRefGoogle ScholarPubMed
Li, B., Zhang, Y., Zhou, X., Liu, Z., Liu, Q. & Li, X. (2016) Different dye removal mechanisms between monodispersed and uniform hexagonal thin plate-like MgAl–CO32–-LDH and its calcined product in efficient removal of Congo Red from water. Journal of Alloys and Compounds, 673, 265271.10.1016/j.jallcom.2016.02.248CrossRefGoogle Scholar
Liang, X., Zang, Y., Xu, Y., Tan, X., Hou, W., Wang, L. & Sun, Y. (2013) Sorption of metal cations on layered double hydroxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 433, 122131.10.1016/j.colsurfa.2013.05.006CrossRefGoogle Scholar
Liu, G., Yang, J. & Xu, X. (2020) Synthesis of hydrotalcite-type mixed oxide catalysts from waste steel slag for transesterification of glycerol and dimethyl carbonate. Scientific Reports, 10, 10273.10.1038/s41598-020-67357-zCrossRefGoogle ScholarPubMed
Lopez, N.A., Luengo, C.V. & Avena, M.J. (2019) Uptake/release of vancomycin on/from Mg–Al layered double hydroxides. Adsorption, 25, 13491360.10.1007/s10450-019-00097-3CrossRefGoogle Scholar
Mantilla, A., Tzompantzi, F., Fernández, A.J.L., Díaz Góngora, J.A.I., Mendoza, G. & Gómez, R. (2009) Photodegradation of 2,4-dichlorophenoxyacetic acid using ZnAlFe layered double hydroxides as photocatalysts. Catalysis Today, 148, 119123.10.1016/j.cattod.2009.02.036CrossRefGoogle Scholar
Miandad, R., Kumar, R., Barakat, M.A., Basheer, C., Aburiazaiza, A.S., Nizami, A.S. & Rehan, M. (2018) Untapped conversion of plastic waste char into carbon–metal LDOs for the adsorption of Congo Red. Journal of Colloid and Interface Science, 511, 402410.10.1016/j.jcis.2017.10.029CrossRefGoogle ScholarPubMed
Mills, S.J., Whitfield, P.S., Wilson, S.A., Woodhouse, J.N., Dipple, G.M., Raudsepp, M. & Francis, C.A. (2011) The crystal structure of stichtite, re-examination of barbertonite and the nature of polytypism in MgCr hydrotalcites. American Mineralogist, 96, 179187.10.2138/am.2011.3531CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Genin, A.G., Kameda, T. & Colombo, F. (2012) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine, 76, 12891336.10.1180/minmag.2012.076.5.10CrossRefGoogle Scholar
Rives, V., Arco, M. & Martín, C. (2014) Intercalation of drugs in layered double hydroxides and their controlled release: a review. Applied Clay Science, 88–89, 239269.10.1016/j.clay.2013.12.002CrossRefGoogle Scholar
Seftel, E.M., Popovici, E., Mertens, M., Cool, P. & Vansant, E.F. (2008) Infrared and Raman spectroscopic study of Sn-containing Zn/Al-layered double hydroxides. Journal of Optoelectronics and Advanced Materials, 10, 34773481.Google Scholar
Tanasoi, S., Mitran, G., Tanchoux, N., Cacciaguerra, T., Fajula, F., Sandulescu, I. et al. (2011) Transition metal-containing mixed oxides catalysts derived from LDH precursors for short-chain hydrocarbons oxidation. Applied Catalysis A: General, 395, 7886.10.1016/j.apcata.2011.01.028CrossRefGoogle Scholar
Tezuka, S., Chitrakar, R., Sonoda, A., Ooi, K. & Tomida, T. (2005) Studies on selective adsorbents for oxo-anions. NO3 adsorptive properties of Ni–Fe layered double hydroxide in seawater. Adsorption, 11, 751755.10.1007/s10450-005-6018-0CrossRefGoogle Scholar
Theiss, F.L., Ayoko, G.A. & Frost, R.L. (2013) Stichtite: a review. Clay Minerals, 48, 143148.10.1180/claymin.2013.048.4.10CrossRefGoogle Scholar
Turvey, C.C., Wilson, S.A., Hamilton, J.L., Tait, A.W., McCutcheon, J., Beinlich, A. & Southam, G. (2018) Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 79, 3860.10.1016/j.ijggc.2018.09.015CrossRefGoogle Scholar
Wang, Z., Wang, E., Gao, L. & Xu, L. (2005) Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil. Journal of Solid State Chemistry, 178, 736741.10.1016/j.jssc.2004.11.005CrossRefGoogle Scholar
Weber, W.J. & Morris, J.C. (1963) Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89, 3159.10.1061/JSEDAI.0000430CrossRefGoogle Scholar
Wei, X., Fu, Y., Xu, L., Li, F., Bi, B. & Liu, X. (2008) Tungstocobaltate-pillared layered double hydroxides: preparation, characterization, magnetic and catalytic properties. Journal of Solid State Chemistry, 181, 12921297.10.1016/j.jssc.2008.02.030CrossRefGoogle Scholar
Zhang, H., Chen, H., Azat, S., Mansurov, Z.A., Liu, X., Wang, J. & Wu, R. (2018) Super adsorption capability of rhombic dodecahedral Ca–Al layered double oxides for Congo Red removal. Journal of Alloys and Compounds, 768, 572581.CrossRefGoogle Scholar
Zhitova, E.S., Krivovichev, S.V., Pekov, I. & Greenwell, H.C. (2018) Crystal chemistry of natural layered double hydroxides. 5. Single-crystal structure refinement of hydrotalcite, [Mg6Al2(OH)16](CO3)(H2O)4. Mineralogical Magazine, 83, 269280.10.1180/mgm.2018.145CrossRefGoogle Scholar