Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T07:58:19.522Z Has data issue: false hasContentIssue false

Sorption of heavy metals from industrial waste water by low-cost mineral silicates

Published online by Cambridge University Press:  09 July 2018

A. Garcia Sanchez
Affiliation:
Departamento de Química y Geoquímica Medioambiental, Instituto de Recursos Naturales y Agrobiología, CSIC, Apdo. 257. 37071 Salamanca
E. Alvarez Ayuso
Affiliation:
Departamento de Química y Geoquímica Medioambiental, Instituto de Recursos Naturales y Agrobiología, CSIC, Apdo. 257. 37071 Salamanca
O. Jimenez de Blas
Affiliation:
Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas, Pza. de la Merced s/n, 37008 Salamanca, Spain

Abstract

The adsorption by different silicate minerals of some heavy metals, present in industrial waste water, has been studied. These adsorbents (mainly clay minerals) are readily available, inexpensive materials and offer a cost-effective alternative to conventional treatment of wastes from the metal finishing industry. The results show that some mineral species are suitable for the purification of such residual waters down to the limits prescribed by current legislation concerning industrial wastes. The Langmuir model was found to describe such adsorption processes best. Sepiolite (Orera, Spain) has an adsorption capacity of 8.26 mg g-1 for Cd2+, the capacities depending on the metal adsorbed in the order: Cd2+ > Cu2+ > Zn2+ > Ni2+. This mineral shows the highest sorption capacity relative to the other minerals studied. Factors in the reaction medium such as pH and ionic strength influenced the adsorption process.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agashe, K.B. & Regalbuto, J.R. (1997) A revised physical theory for adsorption of metal complexes at oxide surfaces. J. Coll. Interf. Sci. 185, 174189.CrossRefGoogle ScholarPubMed
Barrer, R.M. (1989) Shape-selective sorbents based on clay minerals: a review. Clays Clay Miner. 37, 385395.Google Scholar
Brummer, G.W. (1986) The Importance of Chemical Speciation in Environmental Processes. pp. 169-192. Springer-Verlag, Berlin.Google Scholar
Carey, P.L., McLaren, R.G. & Adams, J.A. (1996) Sorption of cupric dichromate and arsenate ions in some New Zealand soils. Water Air Soil Poll. 87, 189203.CrossRefGoogle Scholar
Christensen, T.M. (1984) Cadmium soil sorption at low concentrations. Water Air Soil Poll. 21, 105115.CrossRefGoogle Scholar
Cunha, R.C.A., De Camargo, O.A. & Kinjo, T. (1993) Aplicaçâo de très isotermas na adsorçâo de zinco em oxissolos, alfissolos e ultissolos. Reunion de la Sociedad Espahola de la Ciencia del Suelo, Salamanca (Spain). Google Scholar
Das, N.C. & Bandyopadhyay, M. (1991) Removal of lead by vermiculite medium. Appl. Clay Sci. 6, 221231.CrossRefGoogle Scholar
De Boodt, M.F. (1991) Application of the sorption theory to eliminate heavy metals from waste waters and contamined soils. Pp. 293-320 in: Interactions at the Soil Colloid-Soil Solution Interface. (Bolt, G.H., De Boodt, M.F., Hayes, M.H.B. & McBride, M.B., editors). NATO ASI Series (Series E: Applied Sciences-Vol 190). Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
Farrah, H., Hatton, D. & Pickering, W.F. (1980) The affinity of metal ions for clay surfaces. Chem. Geol. 28, 5568.Google Scholar
Fu, G.M., Allen, H.E. & Cowan CE. (1991) Adsorption of Cd and Cu by manganese oxide. Soil Sci. 152, 7281.CrossRefGoogle Scholar
Giles, C.H., McEwans, T.H., Nakhwa, S.N. & Smith, D. (1960) Studies in adsorption: Part IX. A System of classification of solution adsorption isotherms and its use on diagnosis of adsorption mechanisms and in measurement of specific areas of soils. J. Chem. Soc. 786, 39733993.Google Scholar
Helios-Rybicka, E. (1985) Sorption of Ni, Zn and Cd on sepiolite. Clay Miner. 20, 525527.CrossRefGoogle Scholar
Islam, A.K.M.E. & Lotse, E.G. (1986) Quantitative mineralogical analysis of some Bangladesh soils with X-ray, ion exchange and selective dissolution techniques. Clay Miner. 21, 3142.CrossRefGoogle Scholar
Lai, C.H., Lo, S.L., & Lin CF. (1995) Evaluating an ironcoated sand for removing copper from water. Wat. Sci. Tech. 30, 175182.CrossRefGoogle Scholar
Lo, I.M.C., Mak, R.K.M. & Lee, S.C.M. (1997) Modified clays for waste containment and pollutant attenuation. J. Environ. Eng. 123, 2532.CrossRefGoogle Scholar
Manceau, A., Charlet, L., Boisset, M.C., Didier, B. & Spadini, L. (1992) Sorption and speciation of heavy metals on hydrous Fe and Mn oxides from microscopic to macroscopic. Appl. Clay Sci. 7, 201223.CrossRefGoogle Scholar
McBride, M.B. (1991) Processes of heavy and transition metal sorption by soil mineral. Pp. 149-176 in: Interactions at the Soil Colloid-Soil Solution Interface. (Bolt, G.H., De Boodt, M.F., Hayes, M.H.B. & McBride, M.B., editors). NATO ASI Series (Series E: Applied Sciences-Vol 190). Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
Mercier, L. & Detellier C (1991) Preparation, characterization and applications as heavy metals sorbents of covalently grafted thiol functionalities on the interlamellar surface of montmorillonite. Environ. Sci. Technol. 29, 13181323.CrossRefGoogle Scholar
Mortland, M.M., Shaobai, S. & Boyd, S.A. (1986) Clayorganic complexes as adsorbents for phenols and chlorophenols. Clays Clay Miner. 34, 581585.Google Scholar
Mskay, J.J. & Calvert, R. (1990) Adsorption behavior of copper and zinc in soil: influence of pH on adsorption characteristics. Soil Sci. 150, 513521.CrossRefGoogle Scholar
Namasivayan, C. & Yamuna, R.T. (1995) Adsorption of chromium (VI) by a low-cost adsorbent: Biogas Residual Slurry. Chemosphere. 30, 561578.CrossRefGoogle Scholar
O'Day, P.A., Parks, G.A. & Brown, G.E. (1994) Molecular structure and binding sites of Co(II) surface complex on kaolinite from X-ray Absorption Spectroscopy. Clays Clay Miner. 42, 337355.CrossRefGoogle Scholar
Paulus, W.J., Komarneni, S. & Roy, R. (1992) Bulk synthesis and selective exchange of Sr ions in Na4Mg6Al4Si4O20F4 mica. Nature. 357, 571573.CrossRefGoogle Scholar
Scheidegger, A.M., Lamble, G.M. & Sparks, D.L. (1996) Investigation of Ni sorption on pyophyllite: An XAFS study. Environ. Sci. Technol. 30, 548554.CrossRefGoogle Scholar
Schultz, L.G. (1965) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geol. Surv. Prof. Paper. 391-C.CrossRefGoogle Scholar
Smith, E.H., Lu, W., Vengris, T. & Binkiene, R. (1996) Sorption of heavy metals by Lithuanian glauconite. Water Res. 30, 28832892.CrossRefGoogle Scholar
Stockmeyer, M. & Kruse, K. (1991) Adsorption of Zn and Ni ions and phenol and diethylketones by bentonites of different organophilicitics. Clay Miner. 26, 231434.CrossRefGoogle Scholar
Tan, K.H. (1995) Soil Sampling, Preparation, and Analysis. Marcel Dekker Inc., New York.Google Scholar
Taylor, R.W., Kamaleldin, H., Ahmed, A.M. & James, W.S. (1995) Zinc sorption by Alabama soils. Commun. Soil Sci. Plant Anal. 26, 9931008.CrossRefGoogle Scholar
Tee, T.W. & Khan, A.R.M. (1988) Removal of lead, cadmium and zinc by waste tea leaves. Environ. Tech. Letters. 9, 12231232.CrossRefGoogle Scholar
Theis, T., Iyer, R. & Ellis, S. (1992) Evaluating a new granular Iron oxide for removing Pb from drinking water. J. A.W.W.A. 101-105.Google Scholar
Viraraghavan, T. & Kappor, A. (1995) Adsorption of mercury from wastewater by peat. J. Environ. Sci. Health. 30, 553556.Google Scholar
Wen, X., Du, Q. & Tang, H. (1998) Surface complexation model for the heavy metal adsorption on natural sediment. Environ. Sci. Technol. 32, 870875.CrossRefGoogle Scholar
Zhang, P.C. & Sparks, D.L. (1993) Kinetics of phenol and aniline adsorption and desorption on an organo-clay. Soil Sci. Soc. Am. J. 57, 340345.CrossRefGoogle Scholar
Zhu, B. & Alva, A.K. (1993) Differential adsorption of trace metals by soils as influenced by exchangeable cations and ionic strength. Soil Sci. 155, 6166.CrossRefGoogle Scholar