Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T20:40:04.868Z Has data issue: false hasContentIssue false

Stable isotope geochemistry of clay minerals

“The story of sloppy, sticky, lumpy and tough” Cairns-Smith (1971)

Published online by Cambridge University Press:  09 July 2018

S. M. F. Sheppard
Affiliation:
Laboratoire de Sciences de la Terre, URA CNRS 726, ENS Lyon
H. A. Gilg
Affiliation:
UCB Lyon 1, Ecole Normale Supérieure de Lyon, 69364 Lyon 07, France

Abstract

The equilibrium H- and O-isotope fractionations can be approximated by the following equations which are based on experimental, empirical and/or theoretical data:

Hydrogen: 1000 ln αkaolinite-water = −2.2 × 106 × T−2 − 7.7

Oxygen: 1000 ln αkaolinite-water = 2.76 × 106 × T−2 − 6.75

1000 ln αsmectite-water = 2.55 × 106 × T−2 − 4.05

1000 ln αillite-water = 2.39 × 106 × T−2 − 3.76

The equilibrium H-isotope fractionation factors vs. 106 × T−2 for kaolinite and probably smectite and illite are monotonic curves between 350-0°C. More complex curves, with a minimum fractionation near 200°C, are probably influenced by surface effects and/or disequilibrium fractionations among the different hydrogen sites. The H-isotope fractionations between smectite-water increase by ~70‰ from Fe-poor montmorillonite to nontronite at low temperatures. The pore-interlayer water in smectite H-isotope fractionation at low temperatures is ~20±10‰. The presence of organic matter can modify both the δD value of the clay analysis and its ‘water’ content. Clays — kaolinite, illite, smectite and probably halloysite — tend to retain their D/H and 18O/16O ratios unless subjected to more extreme diagenetic or metamorphic conditions or special local processes. Kinetic information is still only qualitative: for comparable grain sizes, hydrogen exchanges more rapidly than oxygen in the absence of recrystallization. Low-temperature diffusion coefficients cannot be calculated with sufficient precision from the higher temperature exchange data. The H- and O-isotope studies of clays can provide useful information about their conditions of formation.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.U. (1963) An improved pretreatment for mineralogical analysis of samples containing organic matter. Clays Clay Miner. 10, 380388.CrossRefGoogle Scholar
Arehart, G.B., Kesler, S.E., O'Neil, J.R. & Foland, K.A. (1992) Evidence for the supergene origin of alunite in sediment-hosted micron gold deposits, Nevada. Econ. Geol. 87, 263270.Google Scholar
Ayalon, A. & Longstaffe, F. (1988) Oxygen isotope studies of diagenesis and pore-water evolution in the Western Canada sedimenary basin: Evidence from the Upper Cretaceous basal Belly River sandstone, Alberta. J. Sed. Pet. 58, 489505.Google Scholar
Baronnet, A. (1982) Ostwald ripening in solution. The case of calcite and mica. Estudios geol. 38, 185198.Google Scholar
Bechtel, A. & Hoernes, S. (1990) Oxygen isotopic fractionation between oxygen of different sites in illite minerals: a potential single-mineral thermometer. Contrib. Mineral. Petrol. 104, 463-470.Google Scholar
Bernard, C. (1987) Composition isotopique des minéraux secondaires des bauxites. Problemes de genèse. Thesis, Univ. Pierre et Marie Curie, Paris 6, France.Google Scholar
Bethke, P.M. & Rye, R.O. (1979) Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado: IV. Source of fluids from oxygen, hydrogen, and carbon isotope studies. Econ. Geol. 74, 18321851.Google Scholar
Bird, M.I. & Chivas, A.R. (1988) Stable-isotope evidence for low-temperature kaolinitic weathering and post-formational hydrogen-isotope exchange in Permian kaolinites. Chem. Geol. 72, 249265.Google Scholar
Bird, M.I. & Chivas, A.R. (1989) Stable-isotope geochronology of the Australian regolith. Geochim. Cosmochim. Acta, 53, 32393256.Google Scholar
Bird, M.I., Longstaffe, F.J., Fyfe, W.S. & Bildgen, P. (1992) Oxygen-isotope systematics in a multiphase weathering system in Haiti. Geochim. Cosmochim. Acta 56, 28312838.CrossRefGoogle Scholar
Bird, P. (1984) Hydration-phase diagrams and friction of montmorillonite under laboratory and geologic conditions, with implications for shale compaction, slope stability, and strength of fault gouge. Tectonophysics, 107, 235260.CrossRefGoogle Scholar
Blamart, D., Boutaleb, M., Sheppard, S.M.F., Maricnac, C. & Weisbrod, A. (1992) A comparative thermobarometric (chemical and isotopic) study of a tourmalinized pelite and its Sn-Be vein, Walmès, Morocco. Eur. J. Miner. 4, 355368.Google Scholar
Bray, C.J., Spooner, E.T.C. & Longstaffe, F.J. (1988) Unconformity-related uranium mineralization, McClean deposits, north Saskatchewan, Canada: Hydrogen and oxygen isotope geochemistry. Can. Miner. 26, 249268.Google Scholar
Cairns-Smith, A.G. (1971) The Life Puzzle on Crystals and Organisms and the Possibility a Crystal as an Ancestor, p. 131. Oliver & Boyd, Edinburgh.Google Scholar
Capuano, R.M. (1992) The temperature dependence of hydrogen isotope fractionation between clay minerals and water: Evidence from a geopressured system. Geochim. Cosmochim. Acta, 56, 25472554.CrossRefGoogle Scholar
Chivas, A.R., O'Neil, J.R. & Katchan, G. (1984) Uplift and submarine formation of some Melanesian porphyry copper deposits: stable isotope evidence. Earth Planet. Sci. Let. 68, 326334.CrossRefGoogle Scholar
Clauer, N., O'Neil, J.R., Bonnot-Courtois, C. & Holtzapfel, T. (1990) Morphological, chemical and isotopic evidence for an early diagenetic evolution of detrital smectite in marine sediments. Clays Clay Miner. 38, 3346.Google Scholar
Clayton, R.N. & Kieffer, S.W. (1991) Oxygen isotopic thermometer calibrations. Pp. 3–10 in: Stable Isotope Geochemistry: A Tribute to Samuel Epstein. (Taylor, H.P. Jr, O'Neil, J.R. & Kaplan, I.R., editors). The Geochemical Society, Spec. Pub. No. 3, San Antonio.Google Scholar
Cole, D.R. & Ohmoto, H. (1986) Kinetics of isotopic exchange at elevated temperatures and pressures. Pp. 41–90 in: Stable Isotopes in High Temperature Geological Processes (Valley, J.W., Taylor, H.P. Jr. & O'Neil, J.R., editors). Reviews in Mineralogy Vol. 16, Mineralogical Society of America, Washington, D.C.Google Scholar
Cuadros, J., Huertas, F., Delgaoo, A. & Linares, J. (1994) Determination of hydration (H2O-) and structural (H2O+) water for chemical analysis of smectites. Application to Los Trancos smectites, Spain. Clay Miner. 29, 297300.Google Scholar
Dubessy, J., Pagel, M., BiéNY, J.-M., Christensen, H., Hmkel, B., Kosztolanyi, C. & Poty, B. (1988) Radiolysis evidenced by H2-O2 and H2-bearing fluid inclusions in three uranium deposits. Geochim. Cosmochim. Acta, 52, 11551167.Google Scholar
Eberl, D.D. & Srodon, J. (1988) Ostwald ripening and interparticle-diffraction effects for illite crystals. Am. Miner. 73, 13351345.Google Scholar
Eberl, D.D., Środoń, J., Kralik, M., Taylor, B.E. & Peterman, Z.E. (I990) Ostwald ripening of clays and metamorphic minerals. Science, 248, 474–477.Google Scholar
Eberl, D.D., Środoń, J., Lee, M., Nadeau, P.H. & Northrop, H.R. (1987) Sericite from the Silverton caldera, Colorado: Correlation among structure, composition, origin, and particle thickness. Am. Miner. 72, 914934.Google Scholar
Eslinger, E.V. (1971) Mineralogy and oxygen isotope ratios qf hydrothermal and low-grade metamorphic argillaceous rocks. PhD thesis, Case Western Reserve Univ., USA.Google Scholar
Eslinger, E.V. & Savin, S.M. (1973) Mineralogy and oxygen isotope geochemistry of the hydrothermally altered rocks of the Obaki-Broadlands, New Zealand geothermal area. Am. J. Sci. 273, 240267.Google Scholar
Esunger, E.V. & Yeh, H.-W. (1981) Mineralogy, 18/l6O, and D/H ratios of clay-rich sediments from Deep Sea Drilling Project site 180, Aleutian Trench. Clays Clay Miner. 29, 309315.CrossRefGoogle Scholar
Farmer, V.C. & Mitchell, B.D. (1963) Occurrence of oxalates in soil clays following hydrogen peroxide treatment. Soil Sci. 96, 221229.Google Scholar
Fortier, S.M. & Giletti, B.J. (1991) Volume selfdiffusion of oxygen in biotite, muscovite, and phlogopite micas. Geochim. Cosmochim. Acta, 55, 13191330.CrossRefGoogle Scholar
France-Lanord, C. & Sheppard, S.M.F. (1992) Hydrogen isotope composition of pore waters and interlayer water in sediments from the Central Western Pacific, LEG 129. Pp. 295-302 in: Proc. ODP, Scientific Results, Vol. 129 (Larson, R.L., Lancelot, Y. et al., editors). College Station, Texas (ODP).Google Scholar
France-Lanord, C., MICHARD, A. & Karpoff, A.M. (1992) Major element and Sr-isotope composition of interstitial waters in sediments from LEG129: The role of diagenetic reactions. Pp. 267–281 in: Proc. ODP, Scientific Results, Vol. 129 (Larson, R.L., Lancelot, Y. et al., editors). College Station, Texas (ODP).Google Scholar
Friedman, I. & O'Neil, J.R. (1977) Compilation of stable isotope fractionation factors of geochemical interest. USGS Proof. Paper 440-KK.Google Scholar
Giese, R.F. JR (1988) Kaolin minerals: structures and stabilities. Pp. 29-66 in: Hydrous Phyllosilicates (Bailey, S.W., editor). Reviews in Mineralogy Vol. 19, Min. Soc. America, Washington, D.C.Google Scholar
Gilg, H.A. (1993) Geochronological (K-Ar), .fluid inclusion and stable isotope (C,H,O) studies of skarn, porphyry copper, and carbonate-hosted Pb- Zn (Ag,Au) replacement deposits in the Kassandra mining district (Eastern Chalkidiki, Greece). Dissertation, ETH Ztirich, Switzerland.Google Scholar
Gilg, H.A. & Frei, R. (1994) Chronology of magmatism and mineralization in the Kassandra mining area, Greece: the potentials and limitations of dating hydrothermal illites. Geochim. Cosmochim. Acta, 58, 21072122.Google Scholar
Gilg, H.A. & Sheppard, S.M.F. (1995) Hydrogen isotope fractionation between smectites and water. Terra Abstracts (abstract supplement No. 1 to Terra Nova, Vol. 7), 329.Google Scholar
Graham, C.M. (1981) Experimental hydrogen isotope studies III: Diffusion of hydrogen in hydrous minerals, and stable isotope exchange in metamorphic rocks. Contrib. Mineral. Petrol. 76, 216228.Google Scholar
Graham, C.M. & Sheppard, S.M.F. (1980) Experimental hydrogen isotope studies, II. Fractionations in the systems epidote-NaCl-H2O, epidote-CaCl2-H2O and epidote-seawater, and the hydrogen isotope composition of natural epidotes. Earth Planet. Sci. Let. 49, 237251.Google Scholar
Graham, C.M., Viglino, J.A. & Harmon, R.S. (1987) Experimental study of hydrogen-isotope exchange between aluminous chlorite and water and of hydrogen diffusion in chlorite. Am. Miner. 72, 566579.Google Scholar
Hall, W.E., Friedman, I. & Nash, J.T. (1974) Fluid inclusion and light stable isotope study of the Climax molybdenum deposit, Colorado. Econ. Geol. 69, 884901.CrossRefGoogle Scholar
Halter, G., Pagel, M., Sheppard, S.M.F. & Weber, F. (1988) Caractérisations petrographiques, minéralogiques et isotopiques des altérations dans le contexte de certains gisements d'uranium liés spatialement å la discordance du Protérozoic moyen, dans la structure de Carswell (Saskatchewan-Canada). Pp. 365–388 in: Gisments Métallifères dans leur Context Géologique (Johan, Z. & Ohnenstetter, D., editors). Documents du BRGM No. 158, Vol. 1, Orleans.Google Scholar
Halter, G., Sheppard, S.M.F., Weber, F., Clauer, N. & Pagel, M. (1987) Radiation-related retrograde hydrogen isotope and K-Ar exchange in clay minerals. Nature, 330, 638641.Google Scholar
Hamza, M.S. & Broecker, W.S. (1974) Surface effect on the isotopic fractionation between CO2 and some carbonate minerals. Geochim. Cosmochim. Acta, 38, 669681.Google Scholar
Hamza, M.S. & Epstein, S. (1980) Oxygen isotopic fractionation between oxygen of different sites in hydroxyl-bearing silicate minerals. Geochim. Cosmochim. Acta, 44, 173182.CrossRefGoogle Scholar
Hassanipak, A.A. & Eslinger, E. (1985) Mineralogy, crystallinity and 18O/16O, and D/H of Georgia kaolins. Clays Clay Miner. 33, 99106.Google Scholar
Hashimoto, I. & Jackson, M.L. (1960) Rapid dissolution of allophane and kaolinite-halloysite after dehydration. Clays Clay Miner. 7, 102113.CrossRefGoogle Scholar
Hedenquist, J.W., Matsuhisa, Y., Izawa, E., White, N., Gioenbach, W.F. & Aoki, M. (1994) Geology, geochemistry, and origin of high sulfidation Cu-Au mineralization in the Nansatsu district, Japan. Econ. Geol. 89, 130.Google Scholar
Hein, J.R., Yeh, H.-W. & Alexander, E. (1979) Origin of iron-rich montmorillonite from the manganese nodule belt of the North Equatorial Pacific. Clays Clay Miner. 27, 185194.Google Scholar
Hogg, A.J.C., Pearson, M.J. & Fallick, A.E. (1993) Pretreatment of Fithian illite for oxygen isotope analysis. Clay Miner. 28, 149152.Google Scholar
Horita, J., Cole, D.R. & Wesolowski, D.J. (1993) The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: II. Vapor-liquid water equilibration of mixed salt solutions from 50 to 100°C and geochemical implications. Geochim. Cosmochim. Acta, 57, 47034711.CrossRefGoogle Scholar
Hower, J., Eslinger, E.V., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments: I. Mineralogy and chemical evidence. Geol. Soc. Amer. Bull. 87, 725737.Google Scholar
Hulen, J.B. & Nielson, D.L. (1986) Hydrothermal alteration in the Baca geothermal system, Redondo dome, Valles caldera, New Mexico. J. Geophys. Res. 91, 18671886.CrossRefGoogle Scholar
Inoue, A., Velde, B., Meunier, A. & Touchard, G. (1988) Mechanism of illite formation during illite-tosmectite conversion in a hydrothermal system. Am. Miner. 73, 13251334.Google Scholar
Jackson, M.L. (1979) Soil Chemical Analysis–Advanced Course. Published by the author, Madison, Wisconsin.Google Scholar
Jackson, N.J., Halliday, A.N., Sheppard, S.M.F. & Mitchell, J.G. (1982) Hydrothermal activity in the St. Just mining district, Cornwall, England. Pp. 137–179 in: Metallisation Associated with Acid Magmatism (Evans, A.M., editor). John Wiley, New York.Google Scholar
James, A.T. & Baker, D.R. (1976) Oxygen isotope exchange between illite and water at 22°. Geochim. Cosmochim. Acta, 40, 235239.CrossRefGoogle Scholar
Jiang, W.T., Peacor, D.R. & Essene, E.J. (1994) Clay minerals in the Macadams Sandstone, California–implications for substitution of H3O+ and H2O and metastability of illite. Clays Clay Miner. 42, 3545.CrossRefGoogle Scholar
Kakiuchi, M. (1994) Temperature dependence of fractionation of hydrogen isotopes in aqueous sodium chloride solutions. J. Solution Chem. 23, 10731087.Google Scholar
Kieffer, S.W. (1982) Thermodynamics and lattice vibrations of minerals: 5. Applications to phase equilibria, isotopic fractionation, and high pressure thermodynamic properties. Rev. Geophys. Space Phys. 20, 827849.CrossRefGoogle Scholar
Kotzer, T.G. & Kyser, T.K. (I991) Retrograde alteration of clay minerals in uranium deposits: radiation catalyzed or simply low-temperature exchange? Chem. Geol. 86, 307321.Google Scholar
Kulla, J.B. (1979) Oxygen and hydrogen isotope fractionation factors determined in experimental clay-water systems. PbD thesis, Univ. Illinois at Urbana-Champaign, USA.Google Scholar
Kulla, J.B. & Anderson, T.F. (1978) Experimental oxygen isotope fractionation between kaolinite and water. Pp. 234–235 in: Short Papers Of the 4th Int. Con., Geochronology, Cosmochronolgy, Isotope Geology, (Zartman, R.E., editor). USGS, Open file report No. 78-70.Google Scholar
Kyser, T.K. & Kermch, R. (1991) Retrograde exchange of hydrogen isotopes between hydrous minerals and water at low temperatures. Pp. 409–422 in: Stable Isotope Geochemistry: A Tribute to Samuel Epstein (Taylor, H.P. Jr, O'Neil, J.R. & Kaplan, I.R., editors). The Geochemical Society Spec. Pub. No. 3, San Antonio, USA.Google Scholar
Lambert, S.J. & Epstein, S. (1980) Stable isotope investigations of an active geothermal system in Valles Caldera, Jemez mountains, New Mexico. J. Volc. Geotherm. Res. 8, 111129.CrossRefGoogle Scholar
Land, L.S. & Dutton, S.P. (1978) Cementation of a Pennsylvanian deltaic sandstone: isotopic data. J. Sed. Pet. 48, 11671176.Google Scholar
Landis, G.P. & Rye, R. O. (1974) Geologic, fluid inclusion, and stable isotope studies of the Pasto Bueno tungsten-base metal ore deposit, northern Peru. Econ. Geol. 69, 10251059.CrossRefGoogle Scholar
Lawrence, J.R. & Taviani, M. (1988) Extreme hydrogen, oxygen, and carbon isotope anomalies in the porewaters and carbonates of the sediments and basalts from the Norwegian sea. Methane and hydrogen from mantle. Geochim. Cosmochim. Acta, 52, 20772083.CrossRefGoogle Scholar
Lawrence, J.R. & Taylor, H.P. JR. (1971) Deuterium and oxygen-18 correlation: Clay minerals and hydroxides in Quaternary soil compared to meteoric waters. Geochim. Cosmochim. Acta, 35, 993–1003.Google Scholar
Lawrence, J.R. & Taylor, H.P. JR (1972) Hydrogen and oxygen isotope systematics in weathering profiles. Geochim. Cosmochim. Acta, 36, 1377–1393.CrossRefGoogle Scholar
Ledoux, R.L. & White, J.L. (1963) Infrared study of the OH groups in expanded kaolinite. Science, 143, 244246.Google Scholar
Ledoux, R.L. & White, J.L. (1964) Infrared study of selective deuteration of kaolinite and halloysite at room temperature. Science, 145, 4749.Google Scholar
Liu, K.-K. & Epstein, S. (1984) The hydrogen isotope fractionation between kaolinite and water. Isotope Geoscience 2, 335–350.Google Scholar
Lombardi, G. & Sheppard, S.M.F. (1977) Petrographic and isotopic studies of the altered acid volcanics of the Tolfa-Cerite area, Italy: The genesis of the clays. Clay Miner. 12, 147162.Google Scholar
Longstaffe, F.J. (1986) Oxygen isotope studies of diagenesis in the basal Belly River sandstone, Pembina 1-pool, Alberta. J. Sed. Pet. 56, 7888.Google Scholar
Longstaffe, F.J. & Ayalon, A. (1990) Hydrogen-isotope geochemistry of diagenetic clay minerals from Cretaceous sandstones, Alberta, Canada: evidence for exchange. Appl. Geochem. 5, 657668.Google Scholar
Marumo, K. (1989) Genesis of kaolin minerals and pyrophyllite in Kuroko deposits of Japan: implications for the origin of the hydrothermal fluids from mineralogical and stable isotope data. Geochim. Cosmochim. Acta, 53, 29152924.Google Scholar
Marumo, K., Matsuhisa, Y. & Nagasawa, K. (1982) Hydrogen and oxygen isotopic composition of kaolin minerals in Japan. Proc. Int. Clay Conf. Bologna- Pavia, 315-320.Google Scholar
Marumo, K., Nagasawa, K. & Kuroda, Y. (1980) Mineralogy and hydrogen isotope geochemistry of clay minerals in the Ohnuma geothermal area, northeastern Japan. Earth Planet. Sci. Let. 47, 255262.Google Scholar
Matthews, A., Palin, J.M., Epstein, S. & Stolper, E.M. (1994) Experimental 18O/16O partitioning between crystalline albite, albitic glass, and CO2 gas. Geochim. Cosmochim. Acta, 58, 5255–5266.CrossRefGoogle Scholar
Mitchell, B.D. & Smith, B.F.L. (1974) The removal of organic matter from soil extracts by bromine oxidation. J. Soil Sci. 25, 239241.Google Scholar
Moum, J. & Rosenqvist, I.T. (1958) Hydrogen (protium)- deuterium exchange in clays. Geochim. Cosmochim. Acta, 14, 250252.Google Scholar
Nadeau, P.H. (1987) Relationships between the mean area, volume and thickness for dispersed particles of kaolinites and micaceous clays and their application to surface area and ion exchange properties. Clay Miner. 22, 351356.CrossRefGoogle Scholar
Newman, A.C.D. (1987) The interaction of water with clay mineral surfaces. Pp 237–274 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Mineralogical Society, London.Google Scholar
Northrop, D.A. & Clayton, R.N. (1966) Oxygen isotope fractionations in systems containing dolomite. J. Geol. 74, 174196.Google Scholar
O'Neil, J.R. (1987) Preservation of H, C, and O isotopic ratios in the low temperature environment. Pp. 85–128 in: Stable Isotope Geochemistry of Low Temperature Fluids (Kyser, T.K., editor). Short Course Handbook, No. 13, Mineralogical Association of Canada, Toronto.Google Scholar
O'Neil, J.R. & Kharaka, Y.K. (1976) Hydrogen and oxygen isotope exchange reactions between clay minerals and water. Geochim. Cosmochim. Acta, 40, 241246.Google Scholar
O'Neil, J.R. & Taylor, H.P. JR (1967) The oxygen isotope and cation exchange chemistry of feldspars. Am. Miner. 52, 14141437.Google Scholar
O'Neil, J.R. & Taylor, H.P. JR (1969) Oxygen isotope equilibrium between muscovite and water. J. Geophys. Res. 74, 60126022.Google Scholar
Pagel, M. (1975) Détermination des conditions physicochimiques de la silicification diagénétique des grès Athabasca (Canada) au moyen des inclusions fluides. C.R. Acad. Sci., Paris, S∼r. D 280, 23012304.Google Scholar
Peacor, D.R. (1993) Diagenesis and low-grade metamorphism of shales and slates. Pp. 335–380 in: Minerals and Reactions in the Atomic Scale: Transmission Electron Microscopy (Busek, P.R., editor). Reviews in Mineralogy Vol. 27, Mineralogical Society of America, Washington, D.C. Google Scholar
Pruetr, R.J. & Murray, H.H. (1993) The mineralogical and geochemical controls that source rocks impose on sedimentary kaolins. Pp. 149-170 in: Kaolin Genesis and Utilization. (Murray, H., Bundy, W. & Harvey, C., editors). The Clay Minerals Society Spec. Pub. No.1.Google Scholar
Rye, R.O., Bethke, P.M. & Wasserman, M.D. (1992) The stable isotope geochemistry of acid sulfate alteration. Econ. Geol. 87, 225262.CrossRefGoogle Scholar
Sakai, H. & Tsutsumi, M. (1978) D/H fractionation factors between serpentine and water at 100°C to 500°C and 2000 bar water pressure, and the D/H ratios of natural serpentines. Earth Planet. Sci. Let. 40, 231242.Google Scholar
Savin, S.M. (1967) Oxygen and hydrogen isotope ratios in sedimentary rocks and minerals. Phd thesis, California Institute of Technology, Pasadena, USA.Google Scholar
Savin, S.M. & Epstein, S. (1970a) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim. Cosmochim. Acta, 34, 25–42.Google Scholar
Savin, S.M. & Epstein, S. (1970b) The oxygen and hydrogen isotope geochemistry of ocean sediments and shales. Geochim. Cosmochim. Acta, 34, 43–63.Google Scholar
Savin, S.M. & Lee, M. (1988) Isotopic studies of phyllosilicates. Pp. 189-223 in: Hydrous Phyllosilicates (Bailey, S.W., editor). Reviews in Mineralogy Vol. 19, Mineralogical Society of America, Washington, D.C.Google Scholar
Schutze, H. (1980) Der Isotopenindex - Line Inkrementmethode zur nfiherungsweisen Berechnung yon Isotopenaustauschgleichgewichten zwischen kristallinen Substanzen. Chem. Erde 39, 321334.Google Scholar
Sharp, Z.D. (1990) A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta, 54, 13531357.CrossRefGoogle Scholar
Sheppard, S.M.F. (1977) The Cornubian batholith, SW England: D/H and 18O/16O studies of kaolinite and other alteration minerals. J. Geol. Soc. 133, 573591.CrossRefGoogle Scholar
Sheppard, S.M.F. (1980) Isotopic evidence for the origins of water during metamorphic processes in oceanic crust and ophiolite complexes. Pp. 135–147 in: Association Mafiques Ultra-Mafiques dans les Orogknes. Colloques Internationaux du CNRS, No. 272.Google Scholar
Sheppard, S.M.F. (1986) Characterization and isotopic variations in natural waters. Pp. 165–183 in: Stable Isotopes in High Temperature Geological Processes (Valley, J.W., Taylor, H.P. Jr. & O'Neil, J.R., editors). Reviews in Mineralogy Vol. 16, Mineralogical Society of America, Washington, D.C.Google Scholar
Sheppard, S.M.F. & Gustafson, L.B. (1976) Oxygen and hydrogen isotopes in the porphyry copper deposit at El Salvador, Chile. Econ. Geol. 71, 15491559.Google Scholar
Sheppard, S.M.F. & Taylor, H.P. JR. (1974) Hydrogen and oxygen isotope evidence for the origins of water in the Boulder Batholith and the Butte ore deposits, Montana. Econ. Geol. 69, 926946.Google Scholar
Sheppard, S.M.F., Nielsen, R.L. & Taylor, H.P. JR. (1969) Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Econ. Geol. 64, 755777.Google Scholar
Smith, J.W., Rigby, D., Schmidt, P.W. & Clark, D.A. (1983) D/H ratios of coals and the paleolatitude of their deposition. Nature, 302, 322323.Google Scholar
Stolper, E. & Epstein, S. (1991) An experimental study of oxygen isotope partitioning between silica glass and CO2 vapor. Pp. 35–51 in: Stable Isotope Geochemistry: A Tribute to Samuel Epstein. (Taylor, H.P. Jr, O'Neil, J.R. & Kaplan, I.R., editors). The Geochemical Society Spec. Pub. No. 3, San Antonio.Google Scholar
Suzuokt, T. & Epstein, S. (1976) Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim. Cosmochim. Acta, 40, 12291240.Google Scholar
Syers, J.K., Chapman, S.L., Jackson, M.L., Rex, R.W. & Clayton, R.N. (1968) Quartz isolation from rocks, sediments and soils for determination of oxygen isotopic composition. Geochim. Cosmochim. Acta 32, 10221025.Google Scholar
Taieb, R. (1990) Les isotopes de l'hydrogene, du carbone et de l'oxygene dans les sediments argileux et les eaux de formation. Thesis, Institut National Polytechnique de Lorraine, Nancy, France.Google Scholar
Truesdell, A.H. (1974) Oxygen isotope activities and concentrations in aqueous salt solutions at elevated temperatures: consequences for isotope geochemistry. Earth Planet. Sci. Let. 23, 387396.Google Scholar
Vennemann, T.W., Muntean, J.L., Kesler, S.E., O'Neil, J.R., Valley, J.W. & Russell, N. (1993) Stable isotope evidence for magmatic fluids in the Pueblo Viejo epithermal acid sulfate Au-Ag deposit, Dominican Republic. Econ. Geol. 88, 55–71.CrossRefGoogle Scholar
Vuataz, F. & Goff, F. (1986) Isotope geochemisty of thermal and nonthermal waters in the Valles caldera, Jemez Mountains, Northern New Mexico. J. Geophys. Res. 91.Google Scholar
Wenner, D.B. & Taylor, H.P. JR. (1973) Oxygen and hydrogen isotope studies of the serpentinization of ultramafic rocks in oceanic environments and continental ophiolite complexes. Am. J. Sci. 273, 207239.Google Scholar
White, A. (1986) Chemical and isotopic characteristics of fluids within the Baca geothermal reservoir, Valles caldera, New Mexico. J. Geophys. Res. 91, 18551866.CrossRefGoogle Scholar
Whitney, G. & Velde, B. (1993) Changes in particle morphology during illitization: an experimental study. Clays Clay Miner. 41, 209218.Google Scholar
Wilson, M.R., Kyser, T.K., Mehnert, H.H. & Hozve, J. (1987) Changes in the H-O-At isotope composition of clays during retrograde alteration. Geochim. Cosmochim. Acta, 51, 869878.CrossRefGoogle Scholar
Yen, H.-W. (1980) D/H ratios and late-stage dehydration of shales during burial. Geochim. Cosmochim. Acta, 44, 341352.Google Scholar
Yeh, H.-W. & Epstein, S. (1978) Hydrogen isotope exchange between clay minerals and sea water. Geochim. Cosmochim. Acta, 42, 140–143.Google Scholar
Yen, H.-W. & Eslinoer, E.V. (1986) Oxygen isotopes and the extent of diagenesis of clay minerals during sedimentation and burial in the sea. Clays Clay Miner. 34, 403406.Google Scholar
Yah, H.-W. & Savin, S.M. (1976) The extent of oxygen isotope exchange between clay minerals and sea water. Geochim. Cosmochim. Acta, 40, 743–748.Google Scholar
Yeh, H.-W. & Savin, S.M. (1977) Mechanism of burial metamorphism of argillaceous sediments: 3. O-isotope evidence. Geol. Soc. Amer. Bull. 88, 13211330.Google Scholar
Zheng, Y.-F. (1993) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet. Sci. Let. 120, 247263.Google Scholar