Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T04:54:21.734Z Has data issue: false hasContentIssue false

Study of the dehydroxylation of kaolinite and alunite from a Mexican clay with DRIFTS-MS

Published online by Cambridge University Press:  02 January 2018

N.R. Osornio-Rubio
Affiliation:
Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Av. Tecnológico y A. García Cubas s/n. Celaya, Gto, 38010, México
J.A. Torres-Ochoa
Affiliation:
CINVESTAV-Unidad Querétaro, Libramiento Norponiente No. 2000, Querétaro, 76230, México
M.L. Palma-Tirado
Affiliation:
Unidad de Microscopía INB, UNAM-Juriquilla, Boulevard Juriquilla 3001, Querétaro, 76230, México
H. Jiménez-Islas
Affiliation:
Departamento de Ingeniería Bioquímica y Doctorado en Ciencias de la Ingeniería. Instituto Tecnológico de Celaya, Av. Tecnológico y A. García Cubas s/n. Celaya, Gto, 38010, México
R. Rosas-Cedillo
Affiliation:
Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, México D.F., 09340, México
J.C. Fierro-Gonzalez
Affiliation:
Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Av. Tecnológico y A. García Cubas s/n. Celaya, Gto, 38010, México
G.M. Martínez-González*
Affiliation:
Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Av. Tecnológico y A. García Cubas s/n. Celaya, Gto, 38010, México

Abstract

Few reports exist on the use of Diffuse Reflectance Infrared Fourier Transform Spectrometry coupled with Mass Spectrometry (DRIFTS-MS) in situ to monitor the dehydroxylation of kaolinitic clays. The use of DRIFTS-MS in situ allows study of the effect of heat treatment on the dehydroxylation, identifying intensities and temperatures at which the hydroxyl groups are released, forming metakaolinite and meta-alunite. The effluent gases from the infrared cell were analysed by mass spectrometry. The decrease in intensity of the bands at 3694, 3669, 3650 and 3621 cm−1 associated with the −OH stretching vibration modes of AlVI−OH−AlVI of kaolinite began at 450°C. Two additional bands at 3513 and 3485 cm−1 are associated with the vibration of AlVI−OH of alunite that also began to disappear during thermal treatment. Monitoring of the fractions m/e 17 and 18 using a mass spectrometer revealed that the intensity of these fractions increased starting at 450°C. Therefore, it is possible to study the dehydroxylation process of clays during thermal treatment.Chemical and mineralogical characterization of a kaolinitic clay (KN) fromMexico showed that the clay consists of 64.8% kaolinite, 11.0% alunite and 24.4% quartz based on PXRD, EDS, TG/DTA, TEM and FTIR results, and suggested that the material might have potential for use in the manufacture of ceramics, refractory bricks or geopolymers.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdrakhimova, E.S. & Abdrakhimov, V.Z. (2007) Synthesis of mullite from technogenic materials and pyrophyllite. Russian Journal of Inorganic Chemistry, 52, 345350.Google Scholar
Aparicio, P. & Galán, E. (1999) Mineralogical interference on kaolinite crystallinity index measurements. Clays and Clay Minerals, 47, 1227.Google Scholar
Aras, A., Albayrak, M., Arikan, M. & Sobolev, K. (2007) Evaluation of selected kaolins as raw materials for the Turkish cement and concrete industry. Clay Minerals, 42, 233244.Google Scholar
Badogiannis, E., Kakali, G. & Tsivilis, S. (2005) Metakaolin as supplementary cementitious material: Optimization of kaolin to metakaolin conversion. Journal of Thermal Analysis and Calorimetry, 81, 457462.Google Scholar
Balan, E., Blanchard, M., Hochepied, J.-F. & Lazzeri, M. (2008) Surface modes in the infrared spectrum of hydrous minerals: the OH stretching modes of bayerite. Physics and Chemistry of Minerals, 35, 279285.Google Scholar
Barbosa, Y.F.F., MacKenzie, K.J.D. & Thaumaturgo, C. (2000) Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. InternationalJournal of Inorganic Materials, 2, 309317.Google Scholar
Benoit, M., Ispas, S. & Tuckerman, M. (2001) Structural properties of molten silicates from ab initio molecular-dynamics simulations: Comparison between CaO-Al2O3-SiO2 and SiO2. Physical Review B, 224205.Google Scholar
Bera, P., Lo, A., Horne, A. & Martı, A. (2009) Comparative in situ DRIFTS-MS study of 12CO- and 13CO-TPR on CuO/CeO2 . Catalyst, 12686, 1068910695.Google Scholar
Bergaya, F., Dion, P., Alcover, J., Cedex, F.O., Clinard, C. & Tchoubar, D. (1996) TEM study of kaolinite thermal decomposition by controlled-rate thermal analysis. Journal of Materials Science, 31, 50695075.Google Scholar
Bish, D.L. (1993) Rietveld refinement of the kaolinite structure at 1.5 K. Clays and Clay Minerals, 41, 738744.CrossRefGoogle Scholar
Breitinger, D.K., Krieglstein, R., Bogner, A., Schwab, R.G., Pimpl, T.H., Mohr, J. & Schukow, H. (1997) Vibrational spectra of synthetic minerals of the alunite and crandallite type. Journal of Molecular Structure, 408-409, 287290.Google Scholar
Brindley, G.W. & Nakahira, M. (1957) Kinetics of dehydroxylation of kaolinite and halloysite. Journal of the American Ceramic Society, 40, 346350.Google Scholar
Chakraborty, A. (2003) New data on thermal effects of kaolinite in the high temperature region. Journal of Thermal Analysis and Calorimetry, 71, 799808.Google Scholar
Cheng, X., Zhu, A., Zhang, Y., Wang, Y., Au, C.T. & Shi, C. (2009) A combined DRIFTS and MS study on reaction mechanism of NO reduction by CO over NiO/CeO2 catalyst. Applied Catalysis B: Environmental, 90, 395404.Google Scholar
Clegg, F., Breen, C., Carter, M.A., Ince, C., Savage, S.D. & Wilson, M.A. (2012) Dehydroxylation and rehydrox-ylation mechanisms in fired clay ceramic: A TG-MS and DRIFTS investigation. Journal of the American Ceramic Society, 95, 41622.Google Scholar
Cohen-Arazi, S. & Krenkel, T.G. (1970) Dehydroxylation heat of alunite. American Mineralogist, 55, 13291337.Google Scholar
Davies, T.W. & Hooper, R.M. (1985) Structural changes in kaolinite caused by rapid dehydroxylation. Journal of Materials Science Letters, 4, 3942.Google Scholar
Drouet, C., Pass, K.L., Baron, D., Draucker, S. & Navrotsky, A. (2004) Thermochemistry of jarosite-alunite and natrojarosite-natroalunite solid solutions. Geochimica et Cosmochimica Acta, 68, 21972205.Google Scholar
Ece, Ö.I., Ekinci, B., Schroeder, P.A., Crowe, D. & Esenli, E. (2013) Origin of the Düvertepe kaolin — alunite deposits in Simav Graben, Turkey: Timing and styles of hydrothermal mineralization. Journal of Volcanology and Geothermal Research, 255, 5778.Google Scholar
Ferone, C., Colangelo, F., Roviello, G., Asprone, D., Menna, C., Balsamo, A., Prota, A., Cioffi, R. & Manfredi, G. (2013) Application-oriented chemical optimization of a metakaolin based geopolymer. Materials, 6, 19201939.Google Scholar
Fripiat, J.J. & Toussaint, E. (1963) Dehydroxylation of kaolinite. II. Conductimetric measurements and infrared spectroscopy. Journal of Physical Chemistry, 67, 3036.Google Scholar
Frost, R.L. & Vassallo, A.M. (1996) The dehydroxylation of the kaolinite clay minerals using infrared emission spectroscopy. Clays and Clay Minerals, 44, 635651.Google Scholar
Frost, R.L. & Wain, D. (2008) A thermogravimetric and infrared emission spectroscopic study of alunite. Journal of Thermal Analysis and Calorimetry, 91, 267274.Google Scholar
Frost, R.L., Kloprogge, J.T., Russell, S.C. & Szetu, J.L. (1999) Vibrational spectroscopy and dehydroxylation of aluminum (oxo)hydroxides: gibbsite. Applied Spectroscopy, 53, 423434.CrossRefGoogle Scholar
Frost, R.L.,Makó, É., Kristof, I., Horváth, E. & Kloprogge, J.T. (2001) Mechanochemical treatment of kaolinite. Journal of Colloid and Interface Science, 239, 45866.Google Scholar
Frost, R.L., Wain, D.L., Wills, R.A., Musemeci, A. & Martens, W. (2006) A thermogravimetric study of the alunites of sodium, potassium and ammonium. Thermochimica Acta, 443, 5661.Google Scholar
Gualtieri, A. & Bellotto, M. (1998) Modelling the structure of the metastable phases in the reaction sequence kaolinite-mullite by X-ray scattering experiments. Physics and Chemistry of Minerals, 25, 442452.Google Scholar
He, H., Ma, Y., Zhu, J., Yuan, P. & Qing, Y. (2010) Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied Clay Science, 48, 6772.Google Scholar
Ilic, B., Mitrovic, A. & Miličic, L. (2010) Thermal treatment of kaolin clay to obtain metakaolin. Hemijska Industrija, 64, 351356.Google Scholar
Jiang, J.Q., Zeng, Z. & Pearce, P. (2004) Preparation and use of modified clay coagulants for wastewater treatment. Water, Air, and Soil Pollution, 158, 5365.Google Scholar
Kavak, D. (2009) Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design. Journal of Hazardous Materials, 163, 308314.CrossRefGoogle ScholarPubMed
Komusinski, I. & Stoch, L. (1984) Dehydroxylation of kaolinite-group minerals: An ESR study. Journal of Thermal Analysis and Calorimetry, 29, 10331040.Google Scholar
Kristof, I., Frost, R.L., Kloprogge, J.T., Horvath, E. & Makó, É. (2002) Detection of four different OH-groups in ground kaolinite with controlled-rate thermal analysis. Journal of Thermal Analysis and Calorimetry, 69, 7783.Google Scholar
Kristof, I., Frost, R.L., Palmer, S.J., Horváth, E. & Jakab, E. (2010) Thermoanalytical studies of natural potassium, sodium and ammonium alunites. Journal of Thermal Analysis and Calorimetry, 100, 961966.Google Scholar
Kumari, B.J., Pillai, P.K., Warrier, K.G.K. & Satyanarayana, K.G. (1986) Surface modification of kaolinite by controlled thermal treatment. Journal of Materials Science Letters, 5, 865868.Google Scholar
Lambert, J.E., Millman, W.S. & Fripiat, J.J. (1989) Revisiting kaolinite dehydroxylation: A 29Si and 27Al MAS NMR study. Journal of the American Chemical Society, 3522, 19851990.Google Scholar
Li, C., Sun, H. & Li, L. (2010) A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cement and Concrete Research, 40, 13411349.Google Scholar
Liu, J. & Zhao, F. (2010) Structural change and mineralogical transformation mechanism of aluminum hydroxide gels from forced hydrolysis Al(III) solutions containing AlO4Al12(OH)24(H2O)7+12 polyoxyca-tion during aging. Chinese Journal of Geochemistry, 29, 107112.CrossRefGoogle Scholar
Mcintosh, A., Lawther, S.E.M., Kwasny, J., Soutsos, M.N., Cleland, D. & Nanukuttan, S. (2015) Selection and characterisation of geological materials for use as geopolymer precursors. Advances in Applied Ceramics, 114, 378385.Google Scholar
Mohammadi, M. & Salarirad, M.M. (2013) Dehydroxylation kinetics of alunite. Industrial & Engineering Chemistry Research, 52, 73337340.CrossRefGoogle Scholar
Ozer, I. & Soyer-Uzun, S. (2015) Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/ Al ratios. Ceramics International, 41, 1019210198.Google Scholar
Petit, S., Madejova, J., Decarreau, A. & Martin, F. (1999) Characterization of octahedral substitutions in kaoli-nites using near infrared spectroscopy. Clays and Clay Minerals, 47, 103108.Google Scholar
Peys, A., Rahier, H. & Pontikes, Y. (2016) Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Applied Clay Science, 119, 401409.Google Scholar
Piga, L. (1995) Thermogravimetry of a kaolinite-alunite ore. Thermochimica Acta, 265, 567573.Google Scholar
Ptáček, P., Kubátová, D., Havlica, J., Brandštetr, J., Šoukal, F. & Opravil, T. (2010a) The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technology, 204, 222227.Google Scholar
Ptáček, P., Šoukal, F., Opravil, T., Nosková, M., Havlica, I. & Brandštetr, I. (2010b) The non-isothermal kinetics analysis of the thermal decomposition of kaolinite by effluent gas analysis technique. Powder Technology, 203, 272276.CrossRefGoogle Scholar
Ptáček, P., Šoukal, F., Opravil, T., Havlica, I. & Brandštetr, I. (2011) The kinetic analysis of the thermal decomposition of kaolinite by DTG technique. Powder Technology, 208, 2025.Google Scholar
Ptáček, P., Opravil, T., Šoukal, F., Wasserbauer, J., Masilko, I. & Baráček, I. (2013) The influence of structure order on the kinetics of dehydroxylation of kaolinite. Journal of the European Ceramic Society, 33, 27932799.Google Scholar
Qiao, X.C., Si, P. & Yu, J.G. (2008) A systematic investigation into the extraction of aluminum from coal spoil through kaolinite. Environmental Science & Technology, 42, 85418546.Google Scholar
Ramaswamy, S. & Raghavan, P. (2011) Significance of impurity mineral identification in the value addition of kaolin - A case study with reference to an acidic kaolin from India. Journal of Minerals & Materials Characterization & Engineering, 10, 10071025.Google Scholar
Redfern, S.A.T. (1987) The kinetics of dehydroxylation of kaolinite. Clay Minerals, 22, 447456.Google Scholar
Russell, J.D. & Fraser, A.R. (1971) I.R. spectroscopic evidence for interaction between hydronium ions and lattice OH groups in montmorillonite. Clays and Clay Minerals, 17, 5559.Google Scholar
Sahnoune, F., Saheb, N., Khamel, B. & Takkouk, Z. (2011) Thermal analysis of dehydroxylation of Algerian kaolinite. Journal of Thermal Analysis and Calorimetry, 107, 10671072.Google Scholar
Sperinck, S., Raiteri, P., Marks, N. & Wright, K. (2011) Dehydroxylation of kaolinite to metakaolin - a molecular dynamics study. Journal of Materials Chemistry, 21, 21182125.Google Scholar
Talal, M.A.-M. (2006) Alunite associated with kaolin beds, South Jordan. Journal of Applied Science, 6, 25722578.Google Scholar
Tarasevich, Y.I. & Gribina, I.A. (1985) State of the structural hydroxyl groups in minerals of the kaolinite group according to infrared spectroscopic data. Theoretical and Experimental Chemistry, 21, 6976.Google Scholar
Tong, D.S., Liu, M., Li, L., Lin, C.X., Yu, W.H., Xu, Z.P. & Zhou, C.H. (2012) Transformation of alunite residuals into layered double hydroxides and oxides for adsorption of acid red G dye. Applied Clay Science, 70, 17.Google Scholar
Toumi, M. & Tlili, A. (2008) Rietveld refinement and vibrational spectroscopic study of alunite from el Gnater, central Tunisia. Russian Journal of Inorganic Chemistry, 53, 18451853.Google Scholar
Uysal, M. (2011) The effect of alunite on the mechanical properties and sulphate resistance of concrete as a mineral admixture. e-Journal of New World Sciences Academy, 6, 14401447.Google Scholar
van Jaarsveld, J.G., van Deventer, J.S. & Lukey, G. (2002) The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chemical Engineering Journal, 89, 6373.Google Scholar
Velasquez Ochoa, J., Trevisanut, C., Millet, J.-M., Busca, G. & Cavani, F. (2013) In situ DRIFTS-MS study of the anaerobic oxidation of ethanol over spinel mixed oxides. The Journal of Physical Chemistry A, 45, 2390823918.Google Scholar
Warr, L.N., Perdrial, J.N., Lett, M.-C., Heinrich-Salmeron, A. & Khodja, M. (2009) Clay mineral-enhanced bioremediation of marine oil pollution. Applied Clay Science, 46, 337345.Google Scholar
White, C.E., Provis, J.L., Proffen, T., Riley, D.P. & van Deventer, J.S.I. (2010a) Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. Physical Chemistry Chemical Physics, 12, 32393245.Google Scholar
White, C.E., Provis, J.L., Proffen, T., Riley, D.P. & van Deventer, J.S.I. (2010b) Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation. Journal of Physical Chemistry A, 114, 49884996.Google Scholar
White, C.E., Perander, L.M., Provis, J.L. & van Deventer, J.S.J. (2011) The use of XANES to clarify issues related to bonding environments in metakaolin: A discussion of the paper S. Sperinck et al.,, “Dehydroxylation of kaolinite to metakaolin-a molecular dynamics study,” Journal of Materials Chemistry, 2011, 21, 2118–2125. Journal of Materials Chemistry, 21, 70077010.Google Scholar
Xinsheng, L. (2008) DRIFTS study of surface of γ-alumina and its dehydroxylation. The Journal of Physical Chemistry, 112, 50665073.Google Scholar
Yeskis, D., van Groos, A. & Guggenheim, S. (1985) The dehydroxylation of kaolinite. American Mineralogist, 70, 159164.Google Scholar
Zema, M., Callegari, A.M., Tarantino, S.C., Gasparini, E. & Ghigna, P. (2012) Thermal expansion of alunite up to dehydroxylation and collapse of the crystal structure. Mineralogical Magazine, 76, 613623.Google Scholar
Zemenová, P., Kloužková, A., Kohoutková, M. & Král, R. (2014) Investigation of the first and second dehydrox ylation of kaolinite. Journal of Thermal Analysis and Calorimetry, 116, 633639.Google Scholar
Zhang, H., Bai, J., Kong, L., Li, X., Bai, Z. & Li, W. (2015) Behavior of minerals in typical Shanxi coking coal during pyrolysis. Energy & Fuels, 29, 69126919.Google Scholar
Zhao, Y., Zhang, J. & Zheng, C. (2012) Transformation of aluminum-rich minerals during combustion of a bauxite-bearing Chinese coal. International Journal of Coal Geology, 94, 182190.Google Scholar