Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T15:59:10.011Z Has data issue: false hasContentIssue false

Surface modification of bentonites. V. Sol-gel transitions of Ca-montmorillonite in the presence of cationic end-capped poly(ethylene oxides)

Published online by Cambridge University Press:  09 July 2018

G. Lagaly
Affiliation:
Institute of Inorganic Chemistry, University of Kiel, D-24098 Kiel, Germany
S. Ziesmer
Affiliation:
Institute of Inorganic Chemistry, University of Kiel, D-24098 Kiel, Germany

Abstract

The colloidal state of aqueous Ca2+-montmorillonite dispersions was modified with three types of cationic end-capped poly(ethylene oxides). The macromolecules were not only adsorbed at the external surfaces but were also intercalated into the dispersed montmorillonite particles. The amounts adsorbed and the basal spacings (~1.7 nm) were comparable to the corresponding Na+-montmorillonite dispersions. The poly(ethylene oxides) protruding out of the interlayer spaces or adsorbed at the external surface determined the colloidal behaviour of the dispersions. The phase diagrams (sol-gel diagrams) of the Ca2+-montmorillonite dispersions differed from those of the corresponding Na+-montmorillonite because of the different colloidal states of both dispersions (Ca2+-montmorillonite particles vs. delaminated Na+-montmorillonite). The phase diagrams of the poly(ethylene oxide) containing Ca2+-montmorillonite dispersions showed fields of sol and flocs. Attractive gels were formed in a few cases only (TMA+-PEO 1500 and 4000, THA2+-PEO 1500, 4000 and 20,000) and with distinctly lower gel strength than in the presence of Na+ ions. On the basis of the sol-gel diagrams, conditions (type and concentration of poly(ethylene oxides), montmorillonite content) can be selected which lead to peptization of the Ca2+-montmorillonite particles into stable colloidal dispersions (sols). Addition of cationic poly(ethylene oxides) can enhance the salt tolerance up to 1000 mmol/l NaCl.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abend, S. & Lagaly, G. (2000) Sol-gel transitions of sodium montmorillonite dispersions. AppliedClay Science, 16, 201227.Google Scholar
Akari, S., Schrepp, W. & Horn, D. (1996) Imaging of single polyethyleneimine polymers adsorbed on negatively charged latex spheres by chemical force microscopy. Langmuir, 12, 857860.Google Scholar
Ammann, L., Bergaya, F. & Lagaly, G. (2005) Determination of the cation exchange capacity (CEC) of clays with copper complexes —revisited. Clay Minerals, 40, 441453.Google Scholar
Andreola, F., Castelli, E., Ferreira, J.M.F., Olhero, S. & Romagnoli, M. (2006) Effect of sodium hexametaphosphate and aging on the rheological behavior of kaolin dispersions. AppliedClay Science, 31, 5664.Google Scholar
Aranda, P. & Ruiz-Hitzky, E. (1992) Poly(ethylene oxide)—silicate intercalation materials. Chemistry of Materials, 4, 13951403.CrossRefGoogle Scholar
Aranda, P. & Ruiz-Hitzky, E. (1999) Poly(ethylene oxide)/NH4 +-smectite nanocomposites. AppliedClay Science, 15, 119135.Google Scholar
Avery, R.G. & Ramsay, J.D.F. (1986) Colloidal properties of synthetic hectorite clay dispersions. III. Light and small angle neutron scattering. Journal of ColloidandInterface Science, 199, 448454.CrossRefGoogle Scholar
Bergaya, F., Lagaly, G. & Vayer, M. (2006) Cation and anion exchange. Pp. 9791001 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G. editors). Developments in Clay Science, vol. 1, Elsevier, Amsterdam.Google Scholar
Billingham, J., Breen, C. & Yarwood, J. (1997) Adsorption of polyamine, polyacrylic acid and polyethylene glycol on montmorillonite: An in situ study using ATR-FTIR. Vibrational Spectroscopy, 14, 1934.Google Scholar
Breen, C., Rawson, J.O., Mann, B.E. & Aston, M. (1998) In situ 133Cs and 1H solution-phase NMR, thermo-analytical and X-ray diffraction studies of the adsorption of polyalkyleneglycol on Texas bentonite. Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 132, 1730.CrossRefGoogle Scholar
Breen, C., Thompson, G. & Webb, M. (1999) Preparation, thermal stability and decomposition routes of clay Triton-X 100 composites. Journal of Materials Chemistry, 9, 31593165.Google Scholar
Carrado, K.A., Decarreau, A., Petit, S., Bergaya, F. & Lagaly, G. (2006) Synthetic clay minerals and purification of natural clays. Pp. 115139 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G. editors). Developments in Clay Science, vol. 1, Elsevier, Amsterdam.Google Scholar
Castellini, E., Lusvardi, G., Malvasi, G. & Menabue, L. (2005) Thermodynamic aspects of the adsorption of hexametaphosphate on kaolinite. Journal of Colloid andInterface Science, 292, 322329.Google Scholar
Cebula, J.D., Thomas, R.K. & White, J.W. (1980) Small angle neutron scattering from dilute aqueous dispersions of clay. Journal of the Chemical Society, Faraday I, 76, 314321.Google Scholar
Deng, Y., Dixon, J.B. & White, G.N. (2003) Intercalation and surface modification of smectite by two nonionic surfactants. Clays andClay Minerals, 51, 150161.Google Scholar
Deng, Y., Dixon, J.B. & White, G.N. (2006) Bonding mechanisms and conformation of poly(ethylene oxide)-based surfactants in interlayer of smectite. ColloidandPolymer Science, 284, 347356.Google Scholar
Donner, G. (2004) Sol-Gel-Übergänge in Tonmineral dispersionen. PhD thesis, University of Kiel, Germany.Google Scholar
Gregory, J. (1973) Rates of flocculation of latex particles by cationic polymers. Journal of Colloidand Interface Science, 42, 448456.Google Scholar
Grim, R.E. (1962) Applied Clay Mineralogy. McGraw-Hill, New York.Google Scholar
Güven, N. (1992) Molecular aspects of clay/water interactions. Pp. 180 in: Clay—Water Interface andits Rheological Implications (Güven, N. & Pollastro, R.M., editors). CMS workshop lectures, vol. 4, The Clay Minerals Society, Boulder, Co, USA.Google Scholar
Harvey, C. & Lagaly, G. (2006) Conventional applications. Pp. 501540 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G. editors). Developments in Clay Science, vol. 1, Elsevier, Amsterdam.CrossRefGoogle Scholar
Huang, H. & Ruckenstein, E. (2006) Effect of steric, double-layer, and depletion interactions on the stability of colloidal systems containing a polymer and an electrolyte. Langmuir, 22, 45414546.Google Scholar
Jasmund, K. & Lagaly, G. (editors) (1993) Tonminerale undTone. Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt. Steinkopff Verlag, Darmstadt, Germany.Google Scholar
Jepson, W.B. (1984) Kaolins: their properties and uses. Philosophical Transactions of the Royal Society London A, 311, 411432.Google Scholar
Kjellander, R. (1996) Ion-ion correlations and effective charges in electrolyte and macroion systems. Berichte der Bunsengesellschaft für Physikalische Chemie, 100, 894904.CrossRefGoogle Scholar
Kjellander, R., Marcelja, S. & Quirk, J.P. (1988) Attractive double layer interactions between calcium clay particles. Journal of ColloidandInterface Science, 126, 194211.CrossRefGoogle Scholar
Lagaly, G. (1994) Layer charge determination by alkylammonium ions. Pp. 146 in: Charge Characteristics of 2:1 Clay Minerals (Mermut, A., editor). CMS workshop lectures, vol. 6, The Clay Minerals Society, Boulder, Colorado, USA.Google Scholar
Lagaly, G. (2005) From clay mineral crystals to colloidal clay mineral dispersions. Pp. 519600 in: Coagulation andFlocculation, second edition (Stechemesser, H. & Dobiá, B., editors). Surfactant Science Series, vol. 126, CRC Press, Taylor and Francis Group, LLC, Boca Raton. Florida, USA.Google Scholar
Lagaly, G. (2006) Colloid Clay Science. Pp. 143248 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G. editors). Developments in Clay Science, vol. 1, Elsevier, Amsterdam.Google Scholar
Lagaly, G. & Fahn, R. (1983) Tone und Tonminerale. Pp. 311326 in: Ullmann's Encyclopedia of Technical Chemistry, 4 th edition, vol. 23. Verlag Chemie, Weinheim, Germany.Google Scholar
Lagaly, G. & Ziesmer, S. (2002) Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions. Advances in ColloidandInterface Science, 100-102, 105128.Google Scholar
Lagaly, G. & Ziesmer, S. (2005) Surface modification of bentonites. III. Sol—gel transitions of Na-montmorillonite in the presence of trimethylammonium-endcapped poly(ethylene oxides). Clay Minerals, 40, 523536.Google Scholar
Lagaly, G. & Ziesmer, S. (2006) Sol—gel transitions of sodium montmorillonite dispersions by cationic end-capped poly(ethylene oxides) (surface modification of bentonites. IV). ColloidandPolymer Science, 284, 947956.Google Scholar
Lagaly, G., Schulz, O. & Zimehl, R. (1997) Dispersionen undEmulsionen. Eine Einführung in die Kolloidik feinverteilter Stoffe einschließlich der Tonminerale. Mit einem historischen Beitrag über Kolloidwissenschaftler von Klaus Beneke, Steinkopff Verlag, Darmstadt, Germany.Google Scholar
Mabire, F., Audebert, R. & Quivoron, C. (1984) Flocculation properties of water-soluble cationic copolymers towards silica suspension: a semiquantitative interpretation of the role of molecular weight and cationicity through a “patchwork” model. Journal of Colloid and Interface Science, 97, 120136.Google Scholar
Mongondry, P., Tassin, J.F. & Nicolai, T. (2005) Revised state diagram of Laponite dispersions. Journal of ColloidandInterface Science, 283, 397405.Google Scholar
Mourchid, A., Delville, A., Lambard, J., Lécolier, E. & Levitz, P. (1995) Phase diagram of colloidal dispersions of anisotropic charged particles: equilibrium properties, structure, and rheology of Laponite suspensions. Langmuir, 11, 19421950.Google Scholar
Murray, H.H. (1986) Clays. Pp. 109136 in: Ullmann's Encyclopedia of Technical Chemistry, 4th edition, vol. 23. Verlag Chemie, Weinheim, Germany.Google Scholar
Murray, H.H. (1999) Applied clay mineralogy today and tomorrow. Clay Minerals, 34, 3949.Google Scholar
Murray, H.H. (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 17, 207221.CrossRefGoogle Scholar
Murray, H.H. (2003) Clays in industry. Pp. 314 in: A Clay Odyssey (Dominguez, E.A., Mas, G.R. & Cravero, F., editors). Proceedings of the 12th International Clay Conference 2001. Elsevier, Amsterdam.Google Scholar
Murray, H.H. & Elzea Kogel, J.E. (2005) Engineered clay products for the paper industry. Applied Clay Science, 29, 199206.Google Scholar
Nadeau, P. (1985) The physical dimensions of fundamental particles. Clay Minerals, 20, 499514.Google Scholar
Napper, D.H. (1983) Polymeric Stabilization of Colloidal Dispersions, Academic Press, London.Google Scholar
Norrish, K. (1954) The swelling of montmorillonite. Discussions of the Faraday Society, 18, 120134.Google Scholar
Norrish, K. & Rausell-Colom, J.H.A. (1963) Low-angle X-ray diffraction studies of the swelling of montmorillonite and vermiculite. Pp. 123149 in: Clays andClay Minerals, Proceedings of the 10th National Conference, Austin, Texas (Swineford, A. & Franks, P.C. editors). Pergamon Press, New York.Google Scholar
Odom, I.E. (1984) Smectite clay minerals: properties and uses. Philosophical Transactions of the Royal Society London A, 311, 391409.Google Scholar
Oster, J.D., Shainberg, I. & Wood, J.D. (1980) Flocculation value and gel structure of sodium/calcium montmorillonite and illite suspensions. Soil Science Society of America Journal, 44, 955959.Google Scholar
Overbeek, J.T.G. (1977) Recent developments in understanding of colloid stability. Journal of Colloidand Interface Chemistry, 58, 408422.Google Scholar
Overbeek, J.T.G. (1980) The role of Schulze and Hardy. Pure and Applied Chemistry, 52, 11511161.Google Scholar
Overbeek, J.T.G. (1982) Strong and weak points in the interpretation of colloid stability. Advances in ColloidandInterface Chemistry, 16, 1730.Google Scholar
Penner, D. & Lagaly, G. (2000) Influence of organic and inorganic salts on the aggregation of montmorillonite dispersions. Clays andClay Minerals, 48, 246255.Google Scholar
Penner, D. & Lagaly, G. (2001) Influence of anions on the rheological properties of clay mineral dispersions. AppliedClay Science, 19, 131142.Google Scholar
Quirk, J.P. & Marčelja, S. (1997) Application of the double layer theories to the extensive crystalline swelling of Li-montmorillonite. Langmuir, 13, 62416248.Google Scholar
Rytwo, G., Banin, A. & Nir, S. (1996) Exchange reactions in the Ca-Mg-Na-montmorillonite system. Clays and Clay Minerals, 44, 276285.Google Scholar
Schramm, L.L. & Kwak, J.C.T. (1982) Influence of exchangeable cation composition on the size and shape of montmorillonite particles in dilute suspension. Clays andClay Minerals, 30, 4048.Google Scholar
Smalley, M.V., Hatharasinghe, H.L.M., Osborne, I., Swenson, J. & King, S.M. (2001) Bridging flocculation in vermiculite—PEO mixtures. Langmuir, 17, 38003812.Google Scholar
Sonon, L.S. & Thompson, M.L. (2005) Sorption of a nonionic polyoxyethylene lauryl ether surfactant by 2:1 layer silicates. Clays andClay Minerals, 53, 4554.Google Scholar
Sposito, G. (1992) The diffuse ion-swarm near smectitic particles suspended in 1:1 electrolyte solutions: modified Gouy-Chapman theory and quasicrystal formation. Pp. 127155 in: Clay-Water Interface andits Rheological Implications (Güven, N. & Pollastro, R.M., editors). CMS Workshop Lectures, vol. 4, The Clay Minerals Society, Boulder, Colorado, USA.Google Scholar
Sposito, G. & Grasso, D. (1999) Electrical double layer structure, forces, and fields at the clay-water interface. Pp. 207249 in: Interfacial Forces andFields: Theory and Applications (Hsu, J.P., editor). Marcel Dekker, New York.Google Scholar
Tournessat, C., Ferrage, E., Poinsignon, C. & Charlet, L. (2004) The titration of clay minerals. II. Structure-based model and implications for clay reactivity. Journal of Colloidand Interface Science, 273, 234246 Google Scholar
Tributh, H. & Lagaly, G. (1986a) Aufbereitung und Identifizierung von Boden- und Lagerstattentonen. I. Aufbereitung der Proben im Labor. GIT-Fachzeitschrift für das Laboratorium, 30, 524529.Google Scholar
Tributh, H. & Lagaly, G. 1986b) Aufbereitung und Identifizierung von Boden- und Lagerstättentonen. II. Korngrößenanalyse und Gewinnung von Tonsubfraktionen. GIT-Fachzeitschrift für das Laboratorium, 30, 771776.Google Scholar
van Olphen, H. (1977) An Introduction to Clay Colloid Chemistry, 2nd edition. John Wiley & Sons, New York.Google Scholar
Vincent, B. (1973) The van der Waals attraction between colloid particles having adsorbed layers. II. Calculation of interaction curves. Journal of ColloidandInterface Science, 42, 270285.Google Scholar
Vincent, B. (1990) The calculation of depletion layer thickness as a function of bulk polymer concentration. Colloids and Surfaces, 50, 241249.Google Scholar
Vincent, B., Luckham, P.F. & Waite, F.A. (1980) The effect of free polymer on the stability of sterically stabilized dispersion. Journal of Colloidand Interface Science, 73, 508521.Google Scholar
Vincent, B., Edwards, J., Emmett, S. & Jones, A. (1986) Depletion flocculation in dispersions of stericallystabilized particles (“soft particles“). Colloids and Surfaces, 18, 261281.Google Scholar
Weiss, A. (1958) Uber äquimolaren Kationenaustausch bei niedrig geladenen Ionenaustauschern. Kolloid-Zeitschrift, 158, 2228.Google Scholar
Wu, J. & Lerner, M.M. (1993) Structural, thermal, and electrical characterization of layered nanocomposites derived from Na-montmorillonite and polyethers. Chemistry of Materials, 5, 835838.Google Scholar