Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T11:11:27.724Z Has data issue: false hasContentIssue false

Technological behaviour of some Tunisian clays prepared by dry ceramic processing

Published online by Cambridge University Press:  09 July 2018

K. Jeridi
Affiliation:
Laboratoire de Géoressources, CERTE BP 273, 8020 Soliman, Tunisia
M. Hachani
Affiliation:
Laboratoire de Géoressources, CERTE BP 273, 8020 Soliman, Tunisia
W. Hajjaji
Affiliation:
Laboratoire de Géoressources, CERTE BP 273, 8020 Soliman, Tunisia
B. Moussi
Affiliation:
Laboratoire de Géoressources, CERTE BP 273, 8020 Soliman, Tunisia
M. Medhioub
Affiliation:
Faculté des Sciences de Sfax, 3018, Sfax, Tunisia
A. López-Galindo*
Affiliation:
Instituto Andaluz de Ciencias de la Tierra. CSIC - Univ. Granada. Avda. Fuentenueva, s/n. 18002-Granada, Spain
F. Kooli
Affiliation:
ICES, 1 Pesek Road, Jurong Island 62 7833, Singapore
F. Zargouni
Affiliation:
Département de Géologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunisia
J. Labrincha
Affiliation:
Ceramics and Glass Engineering Dept & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
F. Jamoussi
Affiliation:
Laboratoire de Géoressources, CERTE BP 273, 8020 Soliman, Tunisia
*

Abstract

Lower Cretaceous (AJO and AJR) and Oligocene clays (AS) from northern Tunisia were analysed to evaluate their possible use in the production of earthenware tiles by dry processing and fast double-firing. The Cretaceous clays are carbonate-rich (AJO = 20%, AJR = 12%) while the Oligocene ones are carbonate-free. This led to noticeable differences in firing behaviour (shrinkage, sintering rate and loss on ignition) and consequently in functional properties (water absorption, mechanical strength, porosity). The AJO firing shrinkage is very small, which makes this clay suitable for rapid firing. The clays are illite-kaolinite-rich but the AS sample is mostly smectitic (44%) and so is used (10 wt.% maximum) only to adjust the consistency of the powder during pressing. The average agglomerate size ranges from 100 to 350 μm and the distribution is suitable for easy pressing of powders without any special need for further adjustments. Characterization of fired products confirms the high potential of these clays since all properties fall within the ceramic International Standards (ISO). For both technical and economic reasons dry processing is recommended for production of earthenware tiles, in particular for countries in sunnier climates, where solar energy can be exploited for clay drying.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barahona, E. (1974) Arcillas de ladrillería de la provincia de Granada: evaluación de algunos ensayos de materias primas. PhD thesis, Universidad de Granada, Spain.Google Scholar
Baran, B., Ertürk, T., Sarikaya, Y. & Alembaroglu, T. (2001) Workability test method for metals applied to examine a workability measure (plastic limit) for clays. Applied Clay Science, 20, 5363.Google Scholar
Ben Ferjani, A., Burollet, P.F. & Mejri, F. (1990) Petroleum Geology of Tunisia. Memoires Entreprise Turisienne des Activités Pétroliéres, Tunisie, 1, 194 pp.Google Scholar
Biffi, G. (1983) La monocottura rapida porosa: Problemi e prospettive. Faenza Editrice, Italy.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803832.Google Scholar
Bujalka, P., Johan, K., Krivy, M., Rakus, M. & Vacek, J. (1971) Carte géologique de la Tunisie. Feuille N°29 au 1/50 000 de Grombalia et notice explicative. 93 pp.Google Scholar
Carretero, M.I., Dondi, M., Fabbri, B., Guarini, G., Raimondo, M. & Venturi, I. (1998) Technological behaviour of illitic-chloritic clays during the ceramic production process. Proceedings of the 2nd Mediterranean Clay Meeting, Aveiro, Vol. 2, 322327.Google Scholar
Carretero, M.I., Dondi, M., Fabri, B. & Raimondo, M. (2002) The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic-chloritic clays. Applied Clay Science, 20, 301306.Google Scholar
Cultrone, G., Rodríguez-Navarro, C., Sebastián, E., Cazalla, O. & De la Torre, M.J. (2001) Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy, 13, 621634.Google Scholar
Cultrone, G., Sebastián, E., Elert, K., De la Torre, M.J., Cazalla, O. & Rodriguez-Navarro, C. (2004) Influence of mineralogy and firing temperature on the porosity of bricks. Journal of the European Ceramic Society, 24, 547564.Google Scholar
D'Albis, A. (1979) Faience et pâte tendre. Dessain et Tolra, Paris.Google Scholar
Dondi, M., Marsigli, M. & Venturi, I. (1998) Sensibilità all'essiccamento e caratteristiche porosimetriche delle argille italiane per laterizi. Ceramurgia, 28, 18.Google Scholar
Dondi, M., Guarini, G., Ligas, P., Palomba, M. & Raimondo, A. (2000) Chemical, mineralogical and ceramic properties of kaolinitic materials from the tresnuraghes mining district (Western Sardinia, Italy). Applied Clay Science, 18, 145155.CrossRefGoogle Scholar
Dondi, M., Guarini, G., Raimondo, M. & Venturi, I. (2002) Orimulsion fly ash in clay bricks — part 2: technological behaviour of clay/ash mixtures. Journal of the European Ceramic Society, 22, 17371747.Google Scholar
González-Garcia, F., Romero-Acosta, V., García-Ramos, G. & González-Rodrígez, M. (1990) Firing transformations of mixtures of clays containing illite, kaolinite and calcium carbonate used by ornamental tile industries. Applied Clay Science, 5, 361375.CrossRefGoogle Scholar
Haussonne, M. (1969) Technologie ceramique générate: Faïences-Grés-Porcelaine. Vol. 2, 2nd edition, Bailliere, J.-B. et Fils, Paris.Google Scholar
Höllerl, N. (1993) The return of the dry grinding process. Ceramic World Review, 8, 8288.Google Scholar
Höllerl, N., Venturi, V. & Gatti, F. (1996) Calcium carbonate in extruded products. Ceramic World, 2, 3439.Google Scholar
Ingamells, C.O. & Suhr, N.H. (1963) Chemical and spectrochemical analysis of standard silicate samples. Geochimica et Cosmochimica Ada, 27, 897910.Google Scholar
Jamoussi, F. (2001) Les argiles de Tunisie: Etude minéralogique, géochimique, géotechnique et utilisations industrielles. PhD thesis, University of Tunis El Manar, Tunisia.Google Scholar
Jauzein, A. (1967) Contribution à l'étude géologique des confins de la dorsale. Annales des Mines et de la Géologie, Tunisie, 22, 475.Google Scholar
Jordan, M.M., Boix, A., Sanfeliu, T. & De la Fuente, C. (1999) Firing transformations of Cretaceous clays used in the manufacturing of ceramic tiles. Applied Clay Science, 14, 225234.Google Scholar
Jordan, M.M., Sanfeliu, T. & De la Fuente, C. (2001) Firing transformations of Tertiary clays used in the manufacturing of ceramic tile bodies. Applied Clay Science, 20, 8795.Google Scholar
Jouenne, C.A. (1990) Traité de Céramique et de Matériaux minéraux. Editions Septima, Paris.Google Scholar
Kara, A. & Stevens, R. (2002) Characterization of biscuit fired bone china body microstructure. Part I: XRD and SEM of crystalline phases. Journal of the European Ceramic Society, 22, 731736.CrossRefGoogle Scholar
López-Galindo, A., Torres-Ruiz, J. & González-López, J.M. (1996) Mineral quantification in sepiolitepalygorskite deposits using X-ray diffraction and chemical data. Clay Minerals, 31, 217224.CrossRefGoogle Scholar
Lu, G., Max Lu, G.Q. & Xiao, Z.M. (1999) Mechanical properties of porous materials. Journal of Porous Materials, 6, 359368.Google Scholar
Maroncelli, M., Tarquini, P. & Bossaglia, E. (1994) Dry grinding. Ceramic World Review, 11, 8690.Google Scholar
Marsigli, M. & Dondi, M. (1997) Plasticità delle argille italiane per laterizi e previsione del loro comportamento in foggiatura. L ‘Industria dei Laterizi, 46, 214222.Google Scholar
Munier, P. (1957) Technologie des Faïences. Editions Gauthier-Villars, Paris. 227 pp.Google Scholar
Negre, F., Sánchez, E., García, J., Sanz, V. & Jarque, J.C. (1998) Evaluating lamination in porcelain tile. I: Measurement. American Ceramic Society Bulletin, 77, 6368.Google Scholar
Padoa, L. (1982) La cottura dei prodotti ceramid. Terza Edizione, Faenza Editrice, Italy. 299 pp.Google Scholar
Ratzemberger, H. (1986) Causes and methods of determining the drying sensitivity of raw materials for structural ceramics and heavy clay products. Ziegelindustrie International, 39, 535540.Google Scholar
Ratzemberger, H. (1990) An accelerated method for the determination of drying sensitivity. Ziegelindustrie International, 43, 348354.Google Scholar
Rivi, A. & Ries, B. (1997) Single-line dry grinding technology. Ceramic World, 24, 132141.Google Scholar
Romagnoli, M., Burani, M., Tari, G. & Ferreira, J.M.F. (2007) A non-destructive method to assess delamination of ceramic tiles. Journal of the European Ceramic Society, 27, 16311636.Google Scholar
Sánchez, E., Ginés, F., García, J., Sanz, V. & Jarque, J.C. (1998) Evaluating lamination in porcelain tile: II. Pressing cycle and powder characteristics. American Ceramic Society Bulletin, 77, 8185.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. United States Geological Survey Professional Paper, 391-C, 31.Google Scholar
Seed, H., Woodward, R. & Lundgren, R. (1962) Prediction of swelling potential for compacted clays. Journal of Soil Mechanics and Foundations, 3, 5387.Google Scholar
Tari, G. & Ferreira, J.M.F. (1997) Bigot's curves: a practical and efficacious method to characterize unfired compacts obtained by casting. Ceramurgia, 27, 363368.Google Scholar
Van der Merwe, D.H. (1964) Prediction of heave from the plasticity index and percentage of clay fraction of soils. Transactions of the South African Institution of Civil Engineers, 6, 103107.Google Scholar