Published online by Cambridge University Press: 02 January 2018
Because of the current need for new landfill sites in Ankara, the suitability of Ankara Clay as a liner material for landfill sites was investigated. A mineralogical and geotechnical database was created by compiling the results of previous tests by the present authors as well as those of tests performed in the present study. The mineralogical properties of the samples were investigated by X-ray diffraction, scanning electron microscopy and methylene blue adsorption. The cation exchange capacities (CEC) of the samples vary from 12 to 35 meq/100 g soil and the dominant clay minerals are illite, smectite and kaolinite. The geotechnical properties of the Ankara Clay samples that were assessed included specific gravity, the Atterberg limits (plastic limit, liquid limit, plasticity index), particle-size distribution, compaction properties (i.e. maximum dry density and optimum water content) and hydraulic conductivity. Because the hydraulic conductivity of the samples was lower than the acceptable limit of 1 × 10−9 m/s, it follows that, from a geotechnical perspective, Ankara Clay is a suitable material for use as a compacted clay landfill liner. The relationships between the mineralogical and geotechnical parameters that were investigated by regression analysis indicated that the hydraulic conductivity of the compacted soil samples decreased with increasing plasticity index, clay content, CEC, smectite content, smectite to illite ratio and decreasing illite content. According to the specifications for field construction of compacted clay liners, Ankara Clay is suitable for compaction in the field.
This paper is one of a group published in this issue which was originally presented at the Mediterranean Clay Conference, held in Izmir, Turkey in September 2016.