Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T06:36:45.222Z Has data issue: false hasContentIssue false

57Fe Mössbauer Spectroscopic Study of Structural Changes during Dehydration of Nontronite: Effect of Different Exchangeable Cations

Published online by Cambridge University Press:  02 April 2024

Vittorio Luca*
Affiliation:
Chemistry Department, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
*
1Present address: Department of Chemistry, University of Houston, Houston, Texas 77204.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dehydration-induced migration of different exchangeable cations toward the layers of nontronite has been studied by Mössbauer spectroscopy. As interlayer water is removed exchangeable cations migrate toward Fe3+ sites in the tetrahedral sheets of the nontronite (IvFe3+) causing them to distort. The amount of distortion is linearly related to the ionic potential (IP) of the exchangeable cations and is greatest for cations with highest IP. Octahedral Fe3+ sites (VIFe3+) are also affected by migration of cations into the pseudohexagonal cavities. As exchangeable cations move into the pseudohexagonal cavities, interaction with VIFe3+ sites increases. The intensity of the outer VIFe3+ Mössbauer doublet increases with respect to the inner VIFe3+ doublet as the IP of the exchangeable cation increases. It appears that the exchangeable cations play a significant role in determining the thermal stability of nontronite.

Type
Research Article
Copyright
Copyright © 1991, The Clay Minerals Society

References

Annersten, A. and Olesch, M., 1978 Distribution of ferrous and ferric iron in clintonite and the Mössbauer characteristics of ferric iron in tetrahedral coordination Can. Mineral. 16 199203.Google Scholar
Badran, A. H., Dwyer, J., Evmiridis, N. P. and Manford, J. A., 1977 Ferric ion exchange and breakdown of crystalline structure in zeolites Inorganica Chimica Acta 21 6164.CrossRefGoogle Scholar
Bancroft, G. M., 1973 Mössbauer Spectroscopy: An Introduction for Inorganic Chemists and Geochemists London McGraw-Hill 32.Google Scholar
Brigatti, M. F., 1983 Relationships between composition and structure in Fe rich smectites Clay Miner. 18 177186.CrossRefGoogle Scholar
Brindley, G. W. and Kao, C. C., 1980 Formation, composition, and properties of hydroxy-Al and hydroxy-Mg-montmorillonite Clays & Clay Minerals 28 435443.CrossRefGoogle Scholar
Brown, I. D., O’Keefe, M. and Navrotsky, A., 1981 The bond-valence method: An empirical approach to chemical structure and bonding Structure and Bonding in Crystals, Vol. II New York Academic Press 130.Google Scholar
Cardile, C. M., 1985 Structural studies of selected smectites .Google Scholar
Cardile, C. M. and Slade, P. G., 1987 Structural study of a benzidine-vermiculite intercalate having a high tetrahedral-iron content by 57Fe Mossbauer spectroscopy Clays & Clay Minerals 35 203207.CrossRefGoogle Scholar
Coey, J. M. D. Chukhrov, F. V. and Zvyagin, B. B., 1984 Cation distribution, Mossbauer spectra, and magnetic properties of ferripyrophyllite Clays & Clay Minerals 32 198204.CrossRefGoogle Scholar
Dainyak, L. G., Bookin, A. S. and Drits, V. A., 1984 Interpretation of Mossbauer spectra of dioctahedral Fe3 containing layer silicates. II. Nontronite Sov. Phys. Crystallogr. 29 181185.Google Scholar
Dainyak, L. G. and Drits, V. A., 1987 Interpretation of Mossbauer spectra of nontronite, celadonite, and glauconite Clays & Clay Minerals 35 363372.CrossRefGoogle Scholar
Drago, V., Baggio-Saitovich, E. and Danon, J. J., 1977 Mossbauer spectroscopy of electron irradiated natural layer silicates J. Inorg. Nucl. Chem. 39 973979.CrossRefGoogle Scholar
Dyar, M. D., 1987 A review of Mossbauer data on trioctahedral micas: Evidence for tetrahedral Fe3+ and cation ordering Amer. Mineral. 72 102112.Google Scholar
Dyar, M. D. and Burns, R. G., 1986 Mössbauer spectral study of ferruginous one-layer trioctahedral micas Amer. Mineral. 71 955965.Google Scholar
Ferrow, E., 1987 Mossbauer and X-ray studies on the oxidation of annite and ferriannite Phys. Chem. Miner. 14 270275.CrossRefGoogle Scholar
Fripiat, J. J., Rouxhet, P. G., Jacobs, H. and Jelli, A., 1967 La delocalisation des protons dans les solides inorganiques Bull. Groupe Fr. Argiles 19 8795.CrossRefGoogle Scholar
Fripiat, J. J. and Toussaint, F., 1963 Dehydroxylation of kaolinite. II. Conductometric measurements and infrared spectroscopy J. Phys. Chem. 67 3036.CrossRefGoogle Scholar
Goodman, B. A., Russell, J. D. and Fraser, A. R., 1976 A Mossbauer and I. R. spectroscopic study of the structure of nontronite Clays & Clay Minerals 24 5459.CrossRefGoogle Scholar
Heller-Kallai, L. and Rozenson, I., 1980 Dehydroxylation of dioctahedral phyllosilicates Clays & Clay Minerals 28 355368.CrossRefGoogle Scholar
Johnston, J. H. and Cardile, C. M., 1985 Iron sites in nontronite and the effect of interlayer cations from Mossbauer spectra Clays & Clay Minerals 33 2130.CrossRefGoogle Scholar
Lahav, N. and Bresler, E., 1973 Exchangeable cation-structural parameter relationships in montmorillonite Clays & Clay Minerals 21 249255.CrossRefGoogle Scholar
Leonard, R. A. and Weed, S. B., 1967 Influence of exchange ions on the b-dimensions of dioctahedral vermiculite Clays & Clay Minerals 15 149161.CrossRefGoogle Scholar
Low, P. F., 1981 The swelling of clay: III. Dissociation of exchangeable cations Soil Sci. Soc. Amer. J. 45 10741078.CrossRefGoogle Scholar
Luca, V. and Cardile, C. M., 1989 Improved detection of tetrahedral Fe3 in nontronite SWa-1 through Mossbauer spectroscopy Clay Miner. 24 115119.CrossRefGoogle Scholar
Luca, V., 1991 Detection of tetrahedral Fe3+ sites in nontronite and vermiculite by Mossbauer spectroscopy Clays & Clay Minerals 39 467477.CrossRefGoogle Scholar
Maiti, G. C. and Freund, F., 1981 Dehydration related proton conductivity in kaolinite Clay Miner. 16 395413.CrossRefGoogle Scholar
Pavlishin, V. I., Platonov, A. N., Polshin, E. V., Semenova, T. F. and Starova, G. L., 1978 Micas with iron in quadruple coordination Zapisky Vses. Mineral. Obshchestva 107 165176.Google Scholar
Plachinda, A. S., Ovcharenko, F. D., Makarov, E F T Yu I B Yu V and Suzdalev, I. P., 1972 Reduction of iron(III) to iron(II) during the heating of iron containing clay minerals in vacuo Dokl. Akad. Nauk. S.S.S.R. 206 13731376.Google Scholar
Plee, D., Schutz, A., Poncelet, G., Fripiat, J. J., Imelik, B., Naccache, C., Coudurier, G., Taarit, J. B. and Vedrine, J. C., 1985 Acid properties of bidimensional zeolite Catalysis by Acids and Bases Amsterdam Elsevier 343350.CrossRefGoogle Scholar
Poncelet, G., Schutz, A. and Setton, R., 1986 Pillared montmorillonite and beidellite. Acidity and catalytic properties Chemical Reactions in Organic and Inorganic Constrained Systems Dordrecht Reidel 165178.CrossRefGoogle Scholar
Radoslovich, E. W. and Norrish, K., 1962 The cell dimensions and symmetry of layer-lattice silicates. I. Some structural considerations Amer. Mineral. 47 599616.Google Scholar
Sanz, J., Meyers, J., Vieloye, L. and Stone, W. E. E., 1978 The location of iron in natural biotites and phlogopites: A comparison of several methods Clay Miner. 13 4552.CrossRefGoogle Scholar
Suquet, H., Malard, C. and Pezerat, H., 1987 Structure et proprietes d’hydratation des nontronites Clay Miner. 22 157167.CrossRefGoogle Scholar
Suquet, H., Prost, R. and Pezerat, H., 1982 Etude par spectroscopic et diffraction x des interactions eau cation-feuliet dans les phases a 14.6, 12.2 et 10.2Å d’une saponite-Li de synthese Clay Miner. 17 231241.CrossRefGoogle Scholar