Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T17:45:22.161Z Has data issue: false hasContentIssue false

Fine-Grained Serpentine in CM2 Carbonaceous Chondrites and Its Implications for the Extent of Aqueous Alteration on the Parent Body: A Review

Published online by Cambridge University Press:  01 January 2024

Michael A. Velbel*
Affiliation:
Department of Geological Sciences, 206 Natural Science Building, Michigan State University, East Lansing, Michigan 48824-1115, USA
Eric E. Palmer
Affiliation:
Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719-2395, USA
*
* E-mail address of corresponding author: velbel@msu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Outer main-belt asteroids are predominantly of the C-type (carbonaceous), suggesting that they are likely parent bodies of carbonaceous chondrites. Abundant phyllosilicates in some classes of carbonaceous chondrites have chemical compositions, mineral associations, and textures that preserve direct evidence of the processes by which carbonaceous chondrites and their parent asteroids originated and evolved to their present state. Serpentine is the dominant hydroxyl-bearing mineral in the most abundant (CM) group of carbonaceous chondrites. Serpentine may have formed as a direct nebular condensate during cooling of the solar nebula, or by aqueous alteration of anhydrous Mg,Fe-silicate precursors. Such alteration of anhydrous precursors may have occurred in the solar nebula prior to assembly of the meteorites’ parent bodies or on the parent bodies. The relative proportions of Fe and Mg in fine-grained CM2 serpentines have been used to compare the degree of aqueous alteration of different CM2 chondrites with one another. The Mg content of serpentine increases with increasing overall degree of aqueous alteration, so CM2 chondrites with Mg-rich serpentines experienced a more advanced degree of aqueous alteration than CM2 chondrites with Fe-rich serpentines. Attempts to quantify aqueous alteration of CM chondrites by interpreting electron microprobe analyses in terms of charge-balance and site-occupancy constraints from serpentine stoichiometry have met with mixed success. Despite its imperfections, one widely used alteration index based on serpentine stoichiometry is strongly correlated with the elapsed time since the fall and recovery of witnessed CM chondrite falls. Additionally, volatile organic contaminants introduced during sample processing in the laboratory are associated with serpentine and other matrix phyllosilicates. Together, these post-recovery changes in scientifically important sample attributes imply that oxidation-reduction and other types of weathering and contamination affect these meteorites even during curatorial storage and laboratory processing. The same phyllosilicates that make their carbonaceous-chondritic host rocks scientifically important research targets also render those same rocks extraordinarily vulnerable to terrestrial contamination of some of their most scientifically important attributes. This has possible implications for reconstructing pre-terrestrial (parent body) aqueous alteration phenomena from carbonaceous chondritic meteorites and eventually from samples returned by future missions to asteroids with spectral reflectance properties similar to carbonaceous chondrites.

Type
Article
Copyright
Copyright © Clay Minerals Society 2011

References

Abreu, N.M. and Brearley, A.J., 2005 Carbonates in Vigarano: Terrestrial, preterrestrial, or both? Meteoritics And Planetary Science 40 609625.CrossRefGoogle Scholar
Akai, J., 1980 Tubular form of interstratified mineral consisting of a serpentine-like layer plus two brucite-like sheets newly found in the Murchison (C2) meteorite Proceedings of the Fifth Symposium on Antarctic meteorites 17 299310.Google Scholar
Akai, J., 1982 High resolution electron microscopic characterization of phyllosilicates and finding of a new type with 11 Å structure in Yamato-74662 Proceedings of the Seventh Symposium on Antarctic meteorites 25 131144.Google Scholar
Akai, J., 1988 Incompletely transformed serpentine-type phyllosilicates in the matrix of Antarctic CM chondrites Geochimica et Cosmochimica Acta 52 15931599.CrossRefGoogle Scholar
Barber, D.J., 1981 Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites Geochimica et Cosmochimica Acta 45 945970.CrossRefGoogle Scholar
Barber, D.J., 1985 Phyllosilicates and other layer-structured materials in stony meteorites Clay Minerals 20 415454.CrossRefGoogle Scholar
Benedix, G.K. Leshin, L.A. Farquhar, J. Jackson, T. and Theimans, M.H., 2003 Carbonates in CM2 chondrites: constraints on alteration conditions from oxygen isotopic compositions and petrographic observations Geochimica et Cosmochimica Acta 67 15771588.CrossRefGoogle Scholar
Bland, P.A. Zolensky, M.E. Benedix, G.K. Sephton, M.A., Lauretta, D.S. and McSween, H.Y. Jr., 2006 Weathering of chondritic meteorites Meteorites and the Early Solar System II Arizona, USA University of Arizona Press 853867.CrossRefGoogle Scholar
Brearley, A.J., 2003 Nebular versus parent-body processing Meteorites, Comets, and Planets 1 247268.Google Scholar
Brearley, A.J., Lauretta, D.S. and McSween, H.Y. Jr., 2006 The action of water Meteorites and the Early Solar System II Arizona, USA University of Arizona Press 587624.CrossRefGoogle Scholar
Brearley, A.J. and Jones, R.H., 1998 Chondritic meteorites Planetary Materials 36 3-13-398.Google Scholar
Browning, L.B. McSween, H.Y. Jr. and Zolensky, M.E., 1996 Correlated alteration effects in CM carbonaceous chondrites Geochimica et Cosmochimica Acta 60 26212633.CrossRefGoogle Scholar
Browning, L.B. McSween, H.Y. Jr. and Zolensky, M.E., 2000 On the origin of rim textures surrounding anhydrous silicate grains in CM carbonaceous chondrites Meteoritics and Planetary Science 35 10151023.CrossRefGoogle Scholar
Brownlee, D. Tsou, P. Aléon, J. Alexander, C.M.O.D. Araki, T. Bajt, S. Baratta, G.A. Bastien, R. Bland, P. Bleuet, P. Borg, J. Bradley, J.P. Brearley, A. Brenker, F. Brennan, S. Bridges, J.C. Browning, N.D. Brucato, J.R. Bullock, E. Burchell, M.J. Busemann, H. Butterworth, A. Chaussidon, M. Cheuvront, A. Chi, M. Cintala, M.J. Clark, B.C. Clemett, S.J. Cody, G. Colangeli, L. Cooper, G. Cordier, P. Daghlian, C. Dai, Z. D’Hendecourt, L. Djouadi, Z. Dominguez, G. Duxbury, T. Dworkin, J.P. Ebel, D.S. Economou, T.E. Fakra, S. Fairey, S.A.J. Fallon, S. Ferinni, G. Ferroir, T. Fleckenstein, H. Floss, C. Flynn, G. Franchi, I.A. Fries, M. Gainsforth, Z. Gallien, J.-P. Genge, M. Gilles, M.K. Gillet, P. Gilmour, J. Glavin, D.P. Gounelle, M. Grady, M.M. Graham, G.A. Grant, P.G. Green, S.F. Grossemy, F. Grossman, L. Grossman, J.N. Guan, Y. Hagiya, K. Harvey, R. Heck, P. Herzog, G.F. Hoppe, P. Hörz, F. Huth, J. Hutcheon, I.D. Ignatyev, K. Ishii, H. Ito, M. Jacob, D. Jacobsen, C. Jacobson, S. Jones, S. Joswiak, D. Jurewicz, A. Kearsley, A.T. Keller, L.P. Khodja, H. Kilcoyne, A.L.D. Kissel, J. Krot, A. Langenhorst, F. Lanzirotti, A. Le, L. Leshin, L.A. Leitner, J. Lemelle, L. Leroux, H. Liu, M.-C. Luening, K. Lyon, I. MacPherson, G. Marcus, M.A. Marhas, K. Marty, B. Matrajt, G. McKeegan, K. Meibom, A. Mennella, V. Messenger, K. Messenger, S. Mikouchi, T. Mostefai, S. Nakamura, T. Nakano, T. Newville, M. Nittler, L.R. Ohnishi, I. Ohsumi, K. Okudaira, K. Papanastassiou, D.A. Palma, R. Palumbo, M.E. Pepin, R.O. Perkins, D. Perronnet, M. Pianetta, P. Rao, W. Rietmeijer, F.J.M. Robert, F. Rost, D. Rotundi, A. Ryan, R. Sandford, S.A. Schwandt, C.S. See, T.H. Schlutter, D. Sheffield-Parker, J. Simionovici, A. Simon, S. Sitnitsky, I. Snead, C.J. Spencer, M.K. Stademann, F.J. Steele, A. Stephan, T. Stroud, R. Susini, J. Sutton, S.R. Suzuki, Y. Taheri, M. Taylor, S. Teslich, N. Tomeoka, K. Tomioka, N. Toppani, A. Trigo-Rodríguez, J.M. Troadec, D. Tsuchiyama, A. Tuzzolino, A.J. Tyliszczak, T. Uesugi, K. Velbel, M. Vellenga, J. Vicenzi, E. Vincze, L. Warren, J. Weber, I. Weisberg, M. Westphal, A.J. Wirick, S. Wooden, D. Wopenka, B. Wozniakiewicz, P. Wright, I. Yabuta, H. Yano, H. Young, E.D. Zare, R.N. Zega, T. Ziegler, K. Zimmerman, L. Zinner, E. and Zolensky, M., 2006 Comet 81P/Wild 2 Under a Microscope Science 314 17111716.CrossRefGoogle ScholarPubMed
Bunch, T.E. and Chang, S., 1980 Carbonaceous chondrites — II Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochimica et Cosmochimica Acta 44 15431577.Google Scholar
Buseck, P.R. and Hua, X., 1993 Matrices of carbonaceous chondrite meteorites Annual Reviews of Earth and Planetary Science 21 255305.CrossRefGoogle Scholar
Campins, H. Emery, J.P. Kelley, M. Fernández, Y. Licandro, J. Delbó, M. Barucci, A. and Dotto, E., 2009 Spitzer observations of spacecraft target 162173 (1999 JU3) Astronomy & Astrophysics 503 L17L20.CrossRefGoogle Scholar
Campins, H. Morbidelli, A. Tsiganis, K. de Léon, J. Licandro, J. and Lauretta, D., 2010 The origin of asteroid 101955 (1999 RQ36) Astrophysical Journal Letters 721 L53L57.CrossRefGoogle Scholar
Chizmadia, L.J. and Brearley, A.J., 2008 Mineralogy, aqueous alteration, and primitive textural characteristics of fine-grained rims in the Y-791198 CM2 carbonaceous chondrite: TEM observations and comparison to ALHA81002 Geochimica et Cosmochimica Acta 72 602625.CrossRefGoogle Scholar
Ciesla, F.J. and Lauretta, D.S., 2005 Radial migration and dehydration of phyllosilicates in the solar system Earth and Planetary Science Letters 231 18.CrossRefGoogle Scholar
Ciesla, F.J. Lauretta, D.S. Cohen, B.A. and Hood, L.L., 2003 A nebular origin for chondritic fine-grained phyllosilicates Science 299 549552.CrossRefGoogle ScholarPubMed
Committee on the Planetary Science Decadal Survey, 2011 Visions and Voyages for Planetary Science in the Decade 2013–2022 Washington, D.C. Space Studies Board, Division of Engineering and Physical Sciences, National Research Council, The National Academies Press 422.Google Scholar
Delbo, M. and Michel, P., 2011 Temperature history and dynamical evolution of (101955) 1999 RQ 36: A potential target for sample return from a primitive asteroid Astrophysical Journal Letters 728 L42L46.CrossRefGoogle Scholar
Dodd, R.T., 1981 Meteorites: A Petrologic-Chemical Synthesis Cambridge, UK Cambridge University Press 368.Google Scholar
DuFresne, E.R. and Anders, E., 1962 On the chemical evolution of the carbonaceous chondrites Geochimica et Cosmochimica Acta 26 10851114.CrossRefGoogle Scholar
Fuchs, L.H. Olsen, E. and Jensen, K.J., 1973 Mineralogy, mineral-chemistry, and composition of the Murchison (C2) Meteorite Smithsonian Contributions to the Earth Sciences 10 39.Google Scholar
Galimov, E.M., 2010 Phobos sample return mission: Scientific substantiation Solar System Research 44 514.CrossRefGoogle Scholar
Gooding, J.L., Annexstad, J.O. Schultz, L. and Wänke, H., 1986 Weathering of stony meteorites in Antarctica International Workshop on Antarctic Meteorites 4854.Google Scholar
Goswami, J.N. and Macdougall, J.D., 1983 Nuclear track and compositional studies of olivines in CI and CM chondrites Journal of Geophysical Research 88 A755A764.CrossRefGoogle Scholar
Gounelle, M. and Zolensky, M.E., 2001 A terrestrial origin for sulfate veins in CI1 chondrites Meteoritics and Planetary Science 36 13211329.CrossRefGoogle Scholar
Grady, M.M., 2000 Catalogue of Meteorites fifth edition Cambridge, UK Cambridge University Press 689.Google Scholar
Grady, M.M. Wright, I., Lauretta, D.S. and McSween, H.Y. Jr., 2006 Types of extraterrestrial material available for study Meteorites and the Early Solar System II Arizona, USA University of Arizona Press 318.CrossRefGoogle Scholar
Grossman, L., 1972 Condensation in the primitive solar nebula Geochimica et Cosmochimica Acta 49 24332444.Google Scholar
Grossman, L. and Olsen, E.J., 1974 Origin of the hightemperature fraction of C2 chondrites Geochimica et Cosmochimica Acta 38 173187.CrossRefGoogle Scholar
Hanowski, N.P. and Brearley, A.J., 2001 Aqueous alteration of chondrules in the CM carbonaceous chondrite, Allan Hills 81002: Implications for parent body alteration Geochimica et Cosmochimica Acta 65 495518.CrossRefGoogle Scholar
Hasegawa, S. Müller, T.G. Kawakami, K. Kasuga, T. Wada, T. Ita, Y. Takato, N. Terada, H. Fujiyoshi, T. and Abe, M., 2008 Albedo, size, and surface characteristics of Hayabusa-2 sample-return target 162173 1999 JU3 from AKARI and Subaru observations Publications of the Astronomical Society of Japan 60 S399S405.CrossRefGoogle Scholar
Howard, K.T. Benedix, G.K. Bland, P.A. and Cressey, G., 2009 Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD) Part 1: Total phyllosilicate abundance and the degree of aqueous alteration. Geochimica et Cosmochimica Acta 73 45764589.Google Scholar
Hua, X. Wang, J. and Buseck, P.R., 2002 Fine-grained rims in the Allan Hills 81002 and Lewis Cliff 90500 CM2 meteorites: Their origin and modification Meteoritics and Planetary Science 37 229244.CrossRefGoogle Scholar
Hutchison, R., 2004 Meteorites: A Petrologic, Chemical and Isotopic Synthesis Cambridge, UK Cambridge University Press 506.Google Scholar
Jull, A.J.T. Cheng, S. Gooding, J.L. and Velbel, M.A., 1988 Rapid growth of magnesium-carbonate weathering products in a stony meteorite from Antarctica Science 242 417419.CrossRefGoogle Scholar
Kebukawa, Y. Nakashima, S. Otsuka, T. Nakamura-Messenger, K. and Zolensky, M.E., 2009 Rapid contamination during storage of carbonaceous chondrites prepared for micro FTIR measurements Meteoritics & Planetary Science 44 545557.CrossRefGoogle Scholar
Krot, A.N. Keil, K. Goodrich, C.A. Scott, E.R.D. and Weisberg, M.K., 2003 Classification of meteorites Meteorites, Comets, and Planets 1 83128.Google Scholar
Lauretta, D.S. Hua, X. and Buseck, P.R., 2000 Mineralogy of fine-grained rims in the ALH 81002 CM chondrite Geochimica et Cosmochimica Acta 64 32633273.CrossRefGoogle Scholar
Lofgren, G.E., 1989 Dynamic crystallization of chondrule melts of porphyritic olivine composition: Textures experimental and natural Geochimica et Cosmochimica Acta 53 461470.CrossRefGoogle Scholar
Lofgren, G.E., Hewins, R.H. Jones, R.H. and Scott, E.R.D., 1996 A dynamic crystallization model for chondrule melts Chondrules and the Protoplanetary Disk Cambridge, UK Cambridge University Press 187196.Google Scholar
Lofgren, G.E. and Lanier, A.B., 1990 Dynamic crystallization study of barred olivine chondrules Geochimica et Cosmochimica Acta 54 35373551.CrossRefGoogle Scholar
Lofgren, G.E. and Russell, W.J., 1986 Dynamic crystallization of chondrule melts of porphyritic and radial pyroxene composition Geochimica et Cosmochimica Acta 50 17151726.CrossRefGoogle Scholar
Losiak, A.I. and Velbel, M.A., 2011 Evaporite formation during the weathering of Antarctic meteorites — A weathering census analysis based on the ANSMET database Meteoritics and Planetary Science 46 443458.CrossRefGoogle Scholar
Mackinnon, I.D.R., 1982 Ordered mixed-layer structures on the Mighei carbonaceous chondrites Geochimica et Cosmochimica Acta 46 479489.CrossRefGoogle Scholar
Mackinnon, I.D.R. and Buseck, P.R., 1979 New phyllosilicate types in a carbonaceous chondrite matrix Nature 280 219220.CrossRefGoogle Scholar
Mackinnon, I.D.R. and Buseck, P.R., 1979 High resolution transmission electron microscopy of two stony meteorites: Murchison and Kenna Proceedings of the 10th Lunar and Planetary Science Conference 1 937949.Google Scholar
Mackinnon, I.D.R. and Zolensky, M.E., 1984 Proposed structures for poorly characterized phases in C2M carbonaceous chondrite meteorites Nature 309 240242.CrossRefGoogle Scholar
McSween, H.Y. Jr., 1979 Are carbonaceous chondrites primitive or processed? A review Reviews of Geophysics and Space Physics 17 10591078.CrossRefGoogle Scholar
McSween, H.Y. Jr., 1979 Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix Geochimica et Cosmochimica Acta 43 17611770.CrossRefGoogle Scholar
McSween, H.Y. Jr., 1987 Aqueous alteration in carbonaceous chondrites: Mass balance constraints on matrix mineralogy Geochimica et Cosmochimica Acta 51 24692477.CrossRefGoogle Scholar
McSween, H.Y. Jr., 1999 Meteorites and their Parent Planets 2nd edition Cambridge, UK Cambridge University Press 310.Google Scholar
McSween, H.Y. Jr. and Richardson, S.M., 1977 The composition of carbonaceous chondrite matrix Geochimica et Cosmochimica Acta 41 11451161.CrossRefGoogle Scholar
Metzler, K. Bischoff, A. and Stoffler, D., 1992 Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes Geochimica et Cosmochimica Acta 56 28732897.CrossRefGoogle Scholar
Müller, W.F. Kurat, G. and Kracher, A., 1979 Chemical and crystallographic study of cronstedtite in the matrix of the Cochabamba (CM2) carbonaceous chondrite Tschermaks Mineralogische und Petrographische Mitteilungen 26 293304.CrossRefGoogle Scholar
Nesbitt, H.W. and Young, G.M., 1982 Early Proterozoic climates and plate motions inferred from major element chemistry of lutites Nature 299 715717.CrossRefGoogle Scholar
Palmer, E.E. and Lauretta, D.S., 2010 A kamacite alteration index for CM chondrites Lunar and Planetary Science Conference XLI.Google Scholar
Price, J.R. and Velbel, M.A., 2000 Weathering of the Eaton Sandstone (Pennsylvanian), Grand Ledge, Michigan: Geochemical mass-balance and implications for reservoir properties beneath unconformities Journal of Sedimentary Research, A, Sedimentary Petrology and Processes 70 11181128.CrossRefGoogle Scholar
Price, J.R. and Velbel, M.A., 2003 Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks Chemical Geology 202 397416.CrossRefGoogle Scholar
Prinn, R.G. and Fegley, B. Jr., 1987 The atmospheres of Venus, Earth, and Mars: A critical comparison Annual Reviews of Earth and Planetary Science 15 171212.CrossRefGoogle Scholar
Rietmeijer, F.J.M., 2002 The earliest chemical dust evolution in the solar nebula Chemie der Erde 62 145.CrossRefGoogle Scholar
Rubin, A.E. Trigo-Rodríguez, J.M. Huber, H. and Wasson, J.T., 2007 Progressive alteration of CM carbonaceous chondrites Geochimica et Cosmochimica Acta 71 23612382.CrossRefGoogle Scholar
Tomeoka, K. and Buseck, P.R., 1983 A new layered mineral from the Mighei carbonaceous chondrites Nature 306 354356.CrossRefGoogle Scholar
Tomeoka, K. and Buseck, P.R., 1985 Indicators of aqueous alteration in CM carbonaceous chondrites: microtextures of a layered mineral containing Fe, S, O, and Ni Geochimica et Cosmochimica Acta 49 21492163.CrossRefGoogle Scholar
Tomeoka, K. McSween, H.Y. Jr. and Buseck, P.R., 1989 Mineralogical alteration of CM carbonaceous chondrites: A review Proceedings of the National Institute of Polar Research Symposium on Antarctic Meteorites 2 221234.Google Scholar
Tonui, E.K. Zolensky, M.E. Lipschutz, M. Wang, M.-S. and Nakamura, T., 2003 Yamato 86029: Aqueously altered and thermally metamorphosed CI-like chondrite with unusual textures Meteoritics and Planetary Sciences 38 269292.CrossRefGoogle Scholar
Trigo-Rodríguez, J.M. Rubin, A.E. and Wasson, J.T., 2006 Non-nebular origin of dark mantles around chondrules and inclusions in CM chondrites Geochimica et Cosmochimica Acta 70 12711290.CrossRefGoogle Scholar
Van Schmus, W.R. and Wood, J.A., 1967 A chemicalpetrologic classification for the chondritic meteorites Geochimica et Cosmochimica Acta 31 747765.CrossRefGoogle Scholar
Velbel, M.A., 1988 The distribution and significance of evaporitic weathering products on Antarctic meteorites Meteoritics 23 151159.CrossRefGoogle Scholar
Velbel, M.A., 1989 Weathering of hornblende to ferruginous products by a dissolution-reprecipitation mechanism: Petrography and stoichiometry Clays and Clay Minerals 37 515524.CrossRefGoogle Scholar
Velbel, M.A., 1993 Formation of protective surface layers during silicate-mineral weathering under well-leached, oxidizing conditions American Mineralogist 78 408417.Google Scholar
Velbel, M.A., 1999 Bond strength and the relative weathering rates of simple orthosilicates American Journal of Science 299 679696.CrossRefGoogle Scholar
Velbel, M.A. and Barker, W.W., 2008 Pyroxene weathering to smectite: Conventional and low-voltage cryo-field emission scanning electron microscopy, Koua Bocca ultramafic complex, Ivory Coast Clays and Clay Minerals 56 111126.CrossRefGoogle Scholar
Velbel, M.A. Gooding, J.L., Koeberl, C. and Cassidy, W.A., 1990 Terrestrial weathering of Antarctic stony meteorites — Developments 1985–1989 Workshop on Differences between Antarctic and Non-Antarctic Meteorites, Vienna, Austria, July, 1989 9498.Google Scholar
Velbel, M.A. Long, D.T. and Gooding, J.L., 1991 Terrestrial weathering of Antarctic stone meteorites: Formation of Mg-carbonates on ordinary chondrites Geochimica et Cosmochimica Acta 55 6776.CrossRefGoogle Scholar
Velbel, M.A. Donatelle, A.R. and Formolo, M.J., 2009 Reactant-product textures, volume relations, and implications for major-element mobility during natural weathering of hornblende, Tallulah Falls Formation, Georgia Blue Ridge, U.S.A American Journal of Science 309 661688.CrossRefGoogle Scholar
Weisberg, M.K. McCoy, T.J. Krot, A.N., Lauretta, D.S. and McSween, H.Y. Jr., 2006 Systematics and evaluation of meteorite classification Meteorites and the Early Solar System II Arizona, USA University of Arizona Press 1952.CrossRefGoogle Scholar
Wlotzka, F., 1993 A weathering scale for ordinary chondrites Meteoritics 28 460.Google Scholar
Wood, J.A., 1967 Olivine and pyroxene compositions in Type II carbonaceous chondrites Geochimica et Cosmochimica Acta 31 20952108.CrossRefGoogle Scholar
Zega, T.J. and Buseck, P.R., 2003 Fine-grained-rim mineralogy of the Cold Bokkeveld CM chondrite Geochimica et Cosmochimica Acta 67 17111721.CrossRefGoogle Scholar
Zega, T.J. Garvie, L.A.J. and Buseck, P.R., 2003 Nanometer-scale measurements of iron oxidation states of cronstedtite from primitive meteorites American Mineralogist 88 11691172.CrossRefGoogle Scholar
Zega, T.J. Garvie, L.A.J. Dodony, I. and Buseck, P.R., 2004 Serpentine nanotubes in the Mighei CM chondrite Earth and Planetary Science Letters 223 141146.CrossRefGoogle Scholar
Zega, T.J. Garvie, L.A.J. Dódony, I. Friedrich, H. Stroud, R.M. and Buseck, P.R., 2006 Polyhedral serpentine grains in CM chondrites Meteoritics and Planetary Science 41 681688.CrossRefGoogle Scholar
Zolensky, M. and Ivanov, A., 2003 The Kaidun microbreccia meteorite: A harvest from the inner and outer asteroid belt Chemie der Erde 63 185246.CrossRefGoogle Scholar
Zolensky, M. McSween, H.Y. Jr., Kerridge, J.F. and Shapley Matthews, M., 1988 Aqueous alteration Meteorites and the Early Solar System Arizona, USA The University of Arizona Press 114143.Google Scholar
Zolensky, M.E. Barrett, R. and Browning, L., 1993 Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites Geochimica et Cosmochimica Acta 57 31233148.CrossRefGoogle Scholar
Zolensky, M.E. Mittlefehldt, D.W. Lipschutz, M.E. Wang, M.-S. Clayton, R.N. Mayeda, T.K. Grady, M.M. Pillinger, C. and Barber, D., 1997 CM chondrites exhibit the complete petrologic range from type 2 to 1 Geochimica et Cosmochimica Acta 61 50995115.CrossRefGoogle Scholar
Zolensky, M.E. Zega, T.J. Yano, H. Wirick, S. Westphal, A.J. Weisberg, M.K. Weber, I. Warren, J.L. Velbel, M.A. Tsuchiyama, A. Tsou, P. Toppani, A. Tomioka, N. Tomeoka, K. Teslich, N. Taheri, M. Susini, J. Stroud, R. Stephan, T. Stadermann, F.J. Snead, C.J. Simon, S.B. Simionovici, A. See, T.H. Robert, F. Rietmeijer, F.J.M. Rao, W. Perronnet, M.C. Papanastassiou, D.A. Okudaira, K. Ohsumi, K. Ohnishi, I. Nakamura-Messenger, K. Nakamura, T. Mostefaui, S. Mikouchi, T. Meibom, A. Matrajt, G. Marcus, M.A. Leroux, H. Lemelle, L. Le, L. Lanzirotti, A. Langenhorst, F. Krot, A. Keller, L.P. Kearsley, A. Joswiak, D. Jacob, D. Ishii, H. Harvey, R. Hagiya, K. Grossman, L. Grossman, J.N. Graham, G.A. Gounelle, M. Gillet, P. Genge, M.J. Flynn, G.J. Ferroir, T. Fallon, S. Ebel, D.S. Dai, Z.R. Cordier, P. Chi, M. Butterworth, A.L. Brownlee, D.E. Browning, N. Bridges, J.C. Brennan, S. Brearley, A. Bradley, J.P. Bland, P. and Bastien, R., 2006 Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples Science 314 17351739.CrossRefGoogle Scholar