Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T10:25:25.919Z Has data issue: false hasContentIssue false

The Al Pillaring of Clays. Part II. Pillaring with [Al13O4(OH)24(H2O)12]7+

Published online by Cambridge University Press:  28 February 2024

Robert A. Schoonheydt
Affiliation:
Centrum voor Oppervlaktechemie en Katalyse, Materials Research Center K.U. Leuven, K. Mercierlaan 92, 3001 Heverlee, Belgium
Hugo Leeman
Affiliation:
Centrum voor Oppervlaktechemie en Katalyse, Materials Research Center K.U. Leuven, K. Mercierlaan 92, 3001 Heverlee, Belgium
Anita Scorpion
Affiliation:
Centrum voor Oppervlaktechemie en Katalyse, Materials Research Center K.U. Leuven, K. Mercierlaan 92, 3001 Heverlee, Belgium
Ingrid Lenotte
Affiliation:
Centrum voor Oppervlaktechemie en Katalyse, Materials Research Center K.U. Leuven, K. Mercierlaan 92, 3001 Heverlee, Belgium
P. Grobet
Affiliation:
Centrum voor Oppervlaktechemie en Katalyse, Materials Research Center K.U. Leuven, K. Mercierlaan 92, 3001 Heverlee, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hectorite and saponite are exchanged with [Al13O4(OH)24(H2O)12]7+ and the amount of Al3+ adsorbed and Na+ released are followed as a function of the exchange conditions. On saponite the reaction is a pure ion exchange with 2–2.15 mmol Al3+/g adsorbed and release of 0.80 mmol Na+/g. On hectorite the ion exchange is accompanied by supplementary hydrolysis-polymerization of Al13. When excess Al is offered in the form of Al13, ion exchange is incomplete and is accompanied by precipitation and polymerization of Al13 on the surface of both hectorite and saponite. The typical spacing of 1.8 nm is developed after washing, when at least 1.3–1.4 mmol Al3+/g is adsorbed. Above a loading of 2.2–2.5 mmol/g the 1.8 nm spacing is obtained without washing. Only pillared saponite with a loading of at least 1.9 mmol Al3+/g is thermally stable up to 550°C.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

References

Akitt, J. W., and Milic, N. B.. 1984 . Aluminium-27 nuclear magnetic resonance studies of the hydrolysis of aluminium(III). Part 6. Hydrolysis with sodium acetate. J. Chem. Soc. Dalton, 981984.Google Scholar
Bradley, S. M., and Kydd, R. A.. 1991 . A comparison of the thermal stabilities of Ga13, GaAl12 and Al13-pillared clay minerals. Catalysis Lett. 8: 185192.CrossRefGoogle Scholar
Coulter. 1991. Handbook accompanying the Omnisorp 360/100 series of apparatus. Miami Lakes, Florida.Google Scholar
Figueras, F., Klapyta, Z., Massiani, P., Mountassir, Z., Tichit, D., Fajula, F., Gueguen, C., Bousquet, J., and Auroux, A.. 1990 . Use of competitive ion exchange for intercalation of montmorillonite with hydroxy-aluminium species. Clays & Clay Miner. 38: 257264.CrossRefGoogle Scholar
Furrer, G., Ludwig, C., and Schindler, P. W.. 1992 . On the chemistry of the Keggin Al13 polymer. J. Colloid and Interface Chem. 149: 5667.CrossRefGoogle Scholar
Gonzalez, F., Pesquera, C., Benito, I., and Mendorioz, S.. 1991 . Aluminium-gallium pillared montmorillonite with high thermal stability. J. Chem. Soc. Chem. Comm., 587588.Google Scholar
Gonzalez, F., Pesquera, C., Blanco, C., Benito, I., and Mendorioz, S.. 1992 . Synthesis and characterization of Al-Ga pillared clays with high thermal and hydrothermal stability. Inorg. Chem. 31: 727731.CrossRefGoogle Scholar
Lippens, B. C., and de Boer, J. H.. 1965 . Studies on pore systems in catalysts. V. The t-method. J. Catal. 4: 319323.CrossRefGoogle Scholar
Peigneur, P., Maes, A., and Cremers, A.. 1975 . Heterogeneity of change density in montmorillonite as inferred from cobalt adsorption. Clays & Clay Miner. 23: 7175.CrossRefGoogle Scholar
Pinnavaia, T. J., Tzou, M. S., Landau, S. D., and Raythatha, R. H.. 1984 . On the pillaring and delamination of smectite clay catalyst by polyoxo cations of aluminium. J. Molecular Catal. 27: 195212.CrossRefGoogle Scholar
Plee, D., Borg, F., Gatineau, L., and Fripiat, J. J.. 1985 . High resolution solid-state 27Al and 29Si nuclear magnetic resonance study of pillared clays. J. Am. Chem. Soc. 107: 23622369.CrossRefGoogle Scholar
Schoonheydt, R. A., and Leeman, H.. 1992 . Pillaring of saponite in concentrated media. Clay Miner. 27: 249252.CrossRefGoogle Scholar
Schoonheydt, R. A., Van den Eynde, J., Tubbax, H., Leeman, H., Stuyckens, M., Lenotte, I., and Stone, W. E. E.. 1993 . The pillaring of clays. Part I. Pillaring with dilute and concentrated Al solutions. Clays & Clay Miner. 41: 598607.CrossRefGoogle Scholar
Schutz, A., Stone, W. E. E., Poncelet, G., and Fripiat, J. J.. 1987 . Preparation and characterization of bidimensional zeolite structures obtained from synthetic beiddelite and hydroxyl-aluminium solutions. Clays & Clay Miner. 35: 251268.CrossRefGoogle Scholar
Seefeld, V., Bertram, R., Styarke, P., and Gessner, W.. 1988 . Zum Verhalten des tridekameren Oxo-hydroxo-Al-Kations (Al13) bei der Herstellung von “pillared clays”. Silikattechnik 39: 239241.Google Scholar
Seefeld, V., Bertram, R., Müller, D., and Gessner, W.. 1991a . 27A1-NMR spektroskopische Untersuchungen zur Interkalation von Oxo-hydroxo-Aluminium-Kationen in der Zwischenraum van Hectorit. Silikattechnik 42: 305308.Google Scholar
Seefeld, V., Bertram, R., Görz, H., Gessner, W., and Schönherr, S.. 1991b . Zur Interkalation von Heteropolykationen in den Zwischenraum von Smectiten. Z. Anorg. Allg. Chemie. 603: 129135.CrossRefGoogle Scholar
Vaughan, D. E. W., 1980. Preparation of molecular sieves based on pillared interlayered clays (PILC). Proc. Fifth Int. Conf. on Zeolites. Rees, L.V., ed. London: Heyden, 94101.Google Scholar