Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T04:01:43.805Z Has data issue: false hasContentIssue false

The Alteration of Some Aromatic Amino Acids and Polyhydric Phenols by Clay Minerals

Published online by Cambridge University Press:  01 July 2024

Thomas D. Thompson
Affiliation:
Georgia Kaolin Company, 1185 Mary Street, Elizabeth, New Jersey 07207, U.S.A.
Atsuma Tsunashina*
Affiliation:
Georgia Kaolin Company, 1185 Mary Street, Elizabeth, New Jersey 07207, U.S.A.
*
*Department of Chemical Engineering, University of Hokkaidō, Sapporo Hokkaidō, Japan.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

These studies concern the catalytic activity of clays on amino acids, particularly tyrosine. Polyhydric phenols were included to help understand the tyrosine reactions.

Below pH 3, tyrosine is adsorbed on clay minerals by cation exchange. Above pH 3, oxidative degradation of tyrosine occurs, the L-isomer altering more rapidly. The rate of alteration depends upon the particular clay mineral, surface modifications such as polyphosphate treatment, heating, and the presence of copper, aluminium, and mercury. A free radical mechanism is proposed for the alteration.

Résumé

Résumé

Ces recherches portent sur l’activité catalytique des argiles vis-á-vis des amino-acides, la tyrosine en particulier. Des polyphénols ont été également étudiés afin de mieux comprendre les réactions concernant la tyrosine.

En dessous de pH 3, la tyrosine est adsorbée sur les minéraux argileux par échange cationique. Au-dessus de pH 3, la dégradation par oxydation de la tyrosine survient, l’isomère L s’altérant plus rapidement. La vitesse d’altération dépend de la nature du minéral argileux, des modifications de surface telles que le traitement aux polyphosphates, du chauffage et de la présence de cuivre, d’aluminium et de mercure. Un mécanisme par radicaux libres est proposé pour expliquer l’altération.

Kurzreferat

Kurzreferat

Die Untersuchungen betreffen die katalytische Wirkung von Tonmineralen auf Aminosäuren, insbesondere Tyrosin. Mehrwertige Phenole wurden in die Untersuchungen einbezogen, um zum Verständnis der Tyrosinreaktion beizutragen.

Unterhalb pH 3 wird Tyrosin durch Kationenaustausch an Tonmineralen adsorbiert, oberhalb pH 3 findet ein oxidativer Abbau des Tyrosins statt, wobei das L-Isomer schneller umgesetzt wird. Die Abbaurate hängt von der Art des Tonminerals und von Oberflächenmodifikationen ab, wie sie durch Behandlung mit Polyphosphaten, durch Erhitzen, sowie in Gegenwart von Kupfer, Aluminium und Quecksilber entstehen. Für die Umwandlung wird ein Mechanismus vorgeschlagen, der auf der Beteiligung freier Radikale beruht.

Резюме

Резюме

Эти исследования относятся к каталитической активности глин на аминокислоты, особенно на тирозин. Для лучшего понимания реакции тирозина включили многоатомные фенолы.

Ниже рН 3, тирозин катионообменом адсорбируется глинистыми минералами. Выше рН 3, происходит окислительная деградация тирозина, при чем скорее всего изменяется L-изомер. Степень изменения зависит от отдельного используемого глинистого минерала, от поверх¬ностных изменений вследствие обработки полифосфатом, от нагрева, от присутствия меди, алюминия и ртути. Полагают, что в изменениях играет роль механизм свободных радикалов.

Type
Research Article
Copyright
Copyright © 1973 The Clay Minerals Society

References

Bada, J. L., Lugendyk, B. P. and Maynard, J. B., (1970) Marine sediments: Dating by racemization of amino acids Science 730731.CrossRefGoogle Scholar
Campbell, T. W. and Coppinger, G. M., (1951) The spectrophotometric examination of some derivatives of pyrogallol and phloroglucinol Am. J. Chem. Soc. 73 27082712.CrossRefGoogle Scholar
Degens, E. T., Mathejar, J. and Jackson, T. A., (1970) Template catalysis: asymmetric polymerization of amino-acids on clay minerals Nature Lond. 227 492493.CrossRefGoogle ScholarPubMed
Grim, R. E., (1968) Clay Mineralogy New York McGraw-Hill.Google Scholar
Jackson, T. A., (1971) Evidence for selective adsorption and polymerization of th. L-optical isomers of amino acids relative to th. D-optical isomer on edge faces of kaolinite Experentia 27 242243.CrossRefGoogle Scholar
Kaiser, E. T. and Weidman, S. W., (1964) The mechanism of the periodate oxidation of aromatic systems —I. A kinetic study of the periodate oxidation of hydro-quinone an. p-methoxyphenol in acidic solution Am. J. Chem. Soc. 86 43544358.CrossRefGoogle Scholar
Kvenvolden, K. A., Peterson, E. and Brown, F. S., (1970) Racemization of amino acids in sediments from saanich Inlet, British Columbia Science 169 10791082.CrossRefGoogle ScholarPubMed
Lehrer, S. S. and Fasman, G. D., (1967) Ultraviolet irradiation effects in poly-L-tyrosine and model compounds. Identification of bityrosine as a photo-product Biochemistry 6 757767.CrossRefGoogle Scholar
Nierenstein, M., (1915) An oxidation product of pyrogallol J. Chem, Soc. 107 12171220.CrossRefGoogle Scholar
Rao, C. N. R., (1961) Ultraviolet and Visible Spectroscopy London Butterworths.Google Scholar
Thompson, T. D. and Brindley, G. W., (1969) Adsorption of pyrimidines, purines and nucleosides by Na+, Mg2+, and Cu(II)-Illite (Clay-Organic Studies (XVI) Amer. Min. 54 858868.Google Scholar
Thompson, T. D. and Moll, W. F., (1973) The oxidative power of smectites measured by hydroquinone Clays and Clay Minerals 21 337350.CrossRefGoogle Scholar
Weidman, S. W. and Kaiser, E. T., (1966) The mechanism of the periodate oxidation of aromatic systems —III. A kinetic study of the periodate oxidation of catechol Am. J. Chem. Soc. 88 58205827.CrossRefGoogle Scholar
Weil, L., Gordon, W. G. and Buchert, A. R., (1951) Photo-oxidation of amino acids in the presence of methylene blue Arch. Biochem. Biophys. 33 90109.CrossRefGoogle Scholar
Weil, L., (1965) On the mechanism of the photo-oxidation of amino acids sensitized by methylene blue Arch. Biochem. Biophys. 110 5768.CrossRefGoogle ScholarPubMed