Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T04:19:33.242Z Has data issue: false hasContentIssue false

Altered volcanic ash as an indicator of marine environment, reflecting pH and sedimentation rate — Example from the Ordovician Kinnekulle bed of Baltoscandia

Published online by Cambridge University Press:  01 January 2024

Tarmo Kiipli*
Affiliation:
Institute of Geology at Tallinn University of Technology, Ehitajate tee 5 19086 Tallinn, Estonia
Enli Kiipli
Affiliation:
Institute of Geology at Tallinn University of Technology, Ehitajate tee 5 19086 Tallinn, Estonia
Toivo Kallaste
Affiliation:
Institute of Geology at Tallinn University of Technology, Ehitajate tee 5 19086 Tallinn, Estonia
Rutt Hints
Affiliation:
Institute of Geology, University of Tartu, Vanemuise 46 51014 Tartu, Estonia
Peeter Somelar
Affiliation:
Institute of Geology, University of Tartu, Vanemuise 46 51014 Tartu, Estonia
Kalle Kirsimäe
Affiliation:
Institute of Geology, University of Tartu, Vanemuise 46 51014 Tartu, Estonia
*
*E-mail address of corresponding author: tarmo.kiipli@gi.ee
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The composition of altered volcanic ash of the Late Ordovician Kinnekulle bed was studied in geological sections of the Baltic Paleobasin. The composition of altered ash varies with paleosea depth from northern Estonia to Lithuania. The ash bed in shallow shelf limestones contains an association of illite-smectite (I-S) and K-feldspar, with the K2O content ranging from 7.5 to 15.3%. The limestone in the transition zone between shallow- and deep-shelf environments contains I-S-dominated ash with K2O content from 6.0 to 7.5%. In the deep-shelf marlstone and shale, the volcanic ash bed consists of I-S and kaolinite with a K2O content ranging from 4.1 to 6.0%. This shows that authigenic silicates from volcanic ash were formed during the early sedimentary-diagenetic processes. The composition of the altered volcanic ash can be used as a paleoenvironmental indicator showing the pH of the seawater or porewater in sediments as well as the sedimentation rate.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Bearman, G., (2001) Ocean Chemistry and Deep Sea Sediments UK The Open University, Milton Keynes and Butterworth-Heinemann 134 pp.Google Scholar
Bergström, S.M. Huff, W.D. Kolata, D.R. and Bauert, H., (1995) Nomenclature, stratigraphy, chemical fingerprinting and areal distribution of some Middle Ordovician K-bentonites in Baltoscandia Geologiska Föreningens Förhandlingar 117 113.Google Scholar
Bergström, S.M. Huff, W.D. Kolata, D.R. Yost, D.A. and Hart, C.h., (1997) A unique Middle Ordovician K-bentonite succession at Röstanga, S. Sweden Geologiska Föreningens Förhandlingar 119 231244.Google Scholar
Berry, W.B.N. Wilde, P. and Quinby-Hunt, M.S., (1989) Palaeozoic (Cambrian through Devonian) anoxitropic biotopes Palaeogeography, Palaeoclimatology, Palaeoecology 74 313 10.1016/0031-0182(89)90016-3.CrossRefGoogle Scholar
Bohor, B.F. and Triplehorn, D.M. (1993) Tonsteins: Altered volcanic-ash layers in coal bearing sequences. Geological Society of America Special Paper, 285, 44 pp.Google Scholar
Brusewitz, A.M., (1986) Chemical and physical properties of Paleozoic potassium bentonites from Kinnekulle, Sweden Clays and Clay Minerals 34 442454 10.1346/CCMN.1986.0340411.CrossRefGoogle Scholar
Brusewitz, A.M., (1988) Asymmetric zonation of a thick Ordovician K-bentonite bed at Kinnekulle, Sweden Clays and Clay Minerals 36 349353 10.1346/CCMN.1988.0360409.CrossRefGoogle Scholar
Byström, A.M. (1956) Mineralogy of the Ordovician bentonite beds at Kinnekulle, Sweden. Sveriges Geologiska Undersökning, Ser. C, nr. 540, 162.Google Scholar
Chamley, H., Parker, A. and Sellwood, B.W., (1994) Clay mineral diagenesis Quantitative Diagenesis: Recent Developments and Applications to Reservoir Geology Dordrecht, The Netherlands Kluwer Academic Publishers 161188 10.1007/978-94-011-0189-9_5.CrossRefGoogle Scholar
Elliott, W.C. and Aronson, J.L., (1987) Alleghanian episode of K-bentonite illitization in the southern Appalachian basin Geology 15 735739 10.1130/0091-7613(1987)15<735:AEOKII>2.0.CO;2.Google Scholar
Garrels, R.M. and Christ, C.L., (1965) Solutions, Minerals and Equilibria New York Harper and Row 335 pp.Google Scholar
Govindaraju, K., (1995) 1995 working values with confidence limits for twenty six CRPG, ANRT and IWG-GIT geostandards Geostandards Newsletter 19 132 10.1111/j.1751-908X.1995.tb00164.x Special Issue.CrossRefGoogle Scholar
Grim, R.E. and Güven, N. (1978) Bentonites, Geology, Mineralogy, Properties and Uses. Developments in Sedimentology 24, Elsevier, Amsterdam, 256 pp.Google Scholar
Hay, R.L. Lee, M. Kolata, D. Matthews, J.C. and Morton, J.P., (1988) Episodic potassic diagenesis of Ordovician tuffs in the Missisipi Valley area Geology 16 743747 10.1130/0091-7613(1988)016<0743:EPDOOT>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Helgeson, H.C. and Mackenzie, F.T., (1970) Silicate-sea water equilibria in the ocean system Deep-Sea Research 17 877892.Google Scholar
Hints, O. Kallaste, T. and Kiipli, T., (1997) Mineralogy and micropalaeontology of the Kinnekulle altered volcanic ash bed (Ordovician) at Pääsküla, North Estonia Proceedings of the Estonian Academy of Sciences, Geology 46 107118.CrossRefGoogle Scholar
Hints, R. Kirsimäe, K. Somelar, P. Kallaste, T. and Kiipli, T., (2006) Chloritization of Late Ordovician K-bentonites from the northern Baltic palaeobasin — influence from source material or diagenetic environment Sedimentary Geology 191 5566 10.1016/j.sedgeo.2006.01.004.CrossRefGoogle Scholar
Huff, W.D. Kolata, D.R. Bergström, S.M. and Zhang, Y.-S., (1996) Large-magnitude Middle Ordovician volcanic ash falls in North America and Europe: dimensions, emplacement and post emplacement characteristics Journal of Volcanology and Geothermal Research 73 285301 10.1016/0377-0273(96)00025-X.CrossRefGoogle Scholar
Huff, W.D. Müftüoglu, E. Kolata, D.R. and Bergström, S.M., (1999) K-bentonite bed preservation and its event stratigraphic significance Acta Univerisatis Carolinae-Geologica 43 491493.Google Scholar
Huff, W.D., Bergström, S.M., Kolata, D.R. and Kirsimäe, K. (2002) K-bentonite mineralogy and geochemistry. Pp. 1217 in: Soovälja (K-1) drill core, Estonian geological sections (Põldvere, A., editor). Geological Survey of Estonia, Bulletin 4.Google Scholar
Jaanusson, V., (1995) Confacies differentiation and upper Middle Ordovician correlation in the Baltoscandian basin Proceedings of the Estonian Academy of Sciences, Geology 44 7386.CrossRefGoogle Scholar
Kastner, M., (1971) Authigenic feldspars in carbonate rocks American Mineralogist 56 14031442.Google Scholar
Kastner, M. and Siever, R., (1979) Low temperature feldspars in sedimentary rocks American Journal of Science 279 435479 10.2475/ajs.279.4.435.CrossRefGoogle Scholar
Kastner, M. Keene, J.B. and Gieskes, J.M., (1977) Diagenesis of siliceous oozes — I. Chemical controls on the rate of opal-A to opal-CT transformation — an experimental study Geochimica et Cosmochimica Acta 41 10411059 10.1016/0016-7037(77)90099-0.CrossRefGoogle Scholar
Kiipli, T., (1983) On the genesis of Ordovician and Silurian dolomites at the contact with Devonian deposits Proceedings of the Estonian Academy of Sciences, Geology 32 110117 (in Russian).CrossRefGoogle Scholar
Kiipli, T. and Kallaste, T., (2002) Correlation of Telychian sections from shallow to deep sea facies in Estonia and Latvia based on the sanidine composition of bentonites Proceedings of the Estonian Academy of Sciences, Geology 51 143156.Google Scholar
Kiipli, T. and Kallaste, T. (2002b) Characteristics of volcanism. Pp. 1721 in: Soovälja (K-1) drill core, Estonian geological sections (Põldvere, A., editor). Geological Survey of Estonia, Bulletin 4.Google Scholar
Kirsimäe, K. Kalm, V. and Jørgensen, P., (1999) Diagenetic transformation of clay minerals in Lower Cambrian argillaceous sediments of North Estonia Proceedings of the Estonian Academy of Sciences, Geology 48 1534.Google Scholar
Kirsimäe, K., Gorokhov, I.M., Kallaste, T., Kiipli, T. and Kikas, R. (2002) Illite-smectite diagenesis of Ordovician K-bentonites of the Baltic basin: implications for basin development. Pp. 8485 in: The Fifth Baltic Stratigraphical Conference, Extended Abstracts (Satkunas, J. and Lazauskiene, J., editors). Vilnius.Google Scholar
Lapinskas, P.P., (1965) Lower Silurian metabentonites in Lithuania Geology and Oil Reservoirs in the Southern Baltics Vilnius Institute of Geology 4963 (in Russian).Google Scholar
Lashkovas, J., (2000) The Sedimentation Environments of the Ordovician Basin in the South-western margin of the East European Platform and Lithogenesis of Deposits Vilnius Institute of Geology 314 pp.Google Scholar
Lowenstein, T.K. Hardie, L.A. Timofeeff, M.N. and Demicco, R.V., (2003) Secular variation in seawater chemistry and the origin of calcium chloride basinal brines Geology 31 857860 10.1130/G19728R.1.CrossRefGoogle Scholar
Männik, P. and Viira, V. (1990) Conodonts. Pp. 8489 in: Field meeting, Estonia 1990. An Excursion guidebook (Kaljo, D. and Nestor, H., editors). Tallinn.Google Scholar
Min, K. Renne, P.R. and Huff, W.D., (2001) 40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia Earth and Planetary Science Letters 185 121134 10.1016/S0012-821X(00)00365-4.CrossRefGoogle Scholar
Moore, D.M. Reynolds, R.C. Jr., (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals 2 Oxford, UK Oxford University Press 378 p.Google Scholar
Nemliher, R. and Ainsaar, L. (2002) Use of K-bentonite beds as time-planes in sequence stratigraphic analyses of Caradoc (Upper Ordovician) carbonate sedimentation in Estonia. Pp. 144146 in: The Fifth Baltic Stratigraphical Conference, Extended Abstracts (Satkunas, J. and Lazauskiene, J., editors). Vilnius.Google Scholar
Nõlvak, J. Hints, O. and Männik, P., (2006) Ordovician timescale in Estonia: recent developments Proceedings of the Estonian Academy of Sciences, Geology 55 95108.Google Scholar
Orville, P.M., (1967) Unit cell parameters of the microcline—low-albite and the sanidine—high albite solid solution series American Mineralogist 52 5586.Google Scholar
Park, K., (1968) Seawater hydrogen-ion concentration: vertical distribution Science 162 357358 10.1126/science.162.3851.357.CrossRefGoogle ScholarPubMed
Plançon, A. and Drits, V.A., (2000) Phase analysis of clays using an expert system and calculation programs for X-ray diffraction by two- and three-component mixed-layer minerals Clays and Clay Minerals 48 5762 10.1346/CCMN.2000.0480107.CrossRefGoogle Scholar
Põlma, L., (1982) Comparative lithology of the Ordovician carbonate rocks in the Northern and Middle East Baltic Tallinn Valgus 164 pp. (in Russian).Google Scholar
Railsback, L.B. Ackerly, S.C. Anderson, T.h.F. and Cisne, J.L., (1990) Palaeontological and isotope evidence for warm saline deep waters in Ordovician oceans Nature 343 156159 10.1038/343156a0.CrossRefGoogle Scholar
Reynolds, R.C. Jr., (1985) NEWMOD®, A computer program for the calculation of one-dimensional diffraction patterns of mixed-layer clays 8 Brook Drive, Hanover, NH 03755, USA R.C. Reynolds, Jr..Google Scholar
Sheppard, R.A. and Gude, A.J. (1968) Distribution and genesis of authigenic silicate minerals in tuffs of Pleistocene lake Tecopa, Inyo County, California. US Geological Survey Professional Paper, 597, 38 pp.Google Scholar
Sheppard, R.A. and Gude, A.J. (1973) Zeolites and associated authigenic silicate minerals in tuffaceous rocks of the Big Sandy Formation, Mohave County, Arizona. US Geological Survey Professional Paper, 830, 36 pp.Google Scholar
Siever, R. and Woodford, N., (1973) Sorption of silica by clay minerals Geochimica et Cosmochimica Acta 37 18511880 10.1016/0016-7037(73)90146-4.CrossRefGoogle Scholar
Snäll, S. (1977) Silurian and Ordovician bentonites of Gotland (Sweden). Acta Universitatis Stockholmiensis, Stockholm Contributions in Geology, XXXI: 1, 80 pp.Google Scholar
Środoń, J. and Clauer, N., (2001) Diagenetic history of Lower Palaeozoic sediments in Pomerania (northern Poland) traced across the Teisseyre-Tornquist tectonic zone using mixed-layer illite-smectite Clay Minerals 36 1527 10.1180/000985501547321.CrossRefGoogle Scholar
Taylor, J.C., (1991) Computer programs for standardless quantitative analysis of minerals using full powder diffraction profile Powder Diffraction 6 29 10.1017/S0885715600016778.CrossRefGoogle Scholar
Thorslund, P., (1947) Om ordovicisk bentonit på Bornholm Meddelelser fra Dansk Geologisk Forening 11 172178 (in Danish).Google Scholar
Velde, B. (1985) Clay minerals. A Physico-Chemical Explanation of their Occurrence. Developments in Sedimentology, 40, Elsevier, Amsterdam-Oxford-New York-Tokyo, 425 pp.Google Scholar
Vingisaar, P.A. and Murnikova, T., (1973) New data on mineralogy of some Lower Caradocian metabentonites of Estonia Proceedings of the Estonian Academy of Sciences, Chemistry-Geology 22 237243 (in Russian).Google Scholar
Vingisaar, P.A. and Taalmann, V., (1974) Review of dolomitization of Lower Palaeozoic carbonate rocks in Estonia Proceedings of the Estonian Academy of Sciences, Chemistry-Geology 23 149158 (in Russian).Google Scholar