Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T07:01:32.645Z Has data issue: false hasContentIssue false

An Interpretation of Cation Selectivity Variations in M+−M+ Exchange on Clays

Published online by Cambridge University Press:  01 July 2024

Murray B. McBride*
Affiliation:
Department of Agronomy, Cornell University, Ithaca, New York 14853
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The decreasing preference of montmorillonite for K+ relative to Na+ as the clay adsorbs increasing amounts of K+ is shown to be the general rule for the exchange of strongly hydrating ions by weakly hydrating ions. Variability in the mass-action selectivity coefficient is interpreted in terms of a composition-dependent surface entropy, which is a function of the chemical properties of the exchanging ion as well as the nature of the adsorption sites. The generally used mass-action form of exchange equation may only be applicable to exchange systems in which both ions have solution-like mobility at the exchanger surface. It is suggested that experimental variables such as ionic strength can greatly influence the degree of fit of data to a given ion-exchange equation.

Резюме

Резюме

Показано, что уменьшающееся предпочтение монтмориллонита к K+ относительно Na+ в процессе адсорбции глиной увеличивающихся количеств К+ является общим правилом обмена сильно гидратирующих ионов на слабо гидрирующие ионы. Изменчивость коэффициента селективности действующих масс объясняется зависимой от состава поверхностной энтропией, которая является функцией химических свойств обменного иона, а также природы мест адсорбции. Обычно используемая форма уравнения обмена действующих масс может бытьприменена только к обменным системам, в которых оба иона имеют растворо-подобную подвижность на поверхности обмен-ника. Предполагается, что экспериментальные переменные такие как ионная сила могут сильно повлиять на степень соответствия полученных величин данному уравнению обмена ионов.

Resümee

Resümee

Es wird gezeigt, daß die abnehmende Bevorzugung des Montmorillonites für K+ im Vergleich zu Na+, obwohl der Ton zunehmende Mengen an K+ adsorbiert, die allgemeine Regel für den Austausch stark hydratisierender Ionen gegen schwach hydratisierende Ionen ist. Die Schwankung des Massenwir-kungs Selektivitätskoeffizienten wird als eine von der Zusammensetzung abhängende Oberflächenentropie interpretiert, die eine Funktion der chemischen Eigenschaften des austauschenden Ions ist und von der Art der Adsorptionsstelle abhängt. Die im allgemeinen verwendete Austauschgleichung auf Basis des Massenwirkungsgesetzes kann nur bei Austauschsystemen angewendet werden, in denen beide Ionenarten eine lösungsähnliche Beweglichkeit auf der Austauscheroberfläche haben. Es ist anzunehmen, daß experimentelle Variable, wie z.B. die Ionenstärke, den Grad des Zutreffens von Daten auf eine gegebene Ionenaustauschgleichung stark beeinflussen können.

Résumé

Résumé

On a montré que la préférence décroissante de la montmorillonite pour K+ par rapport à Na+ à fur et à mesure que l'argile adsorbe des quantités croissantes de K+ est la règle générale pour l’échange des ions fortement hydratants par les ions faiblement hydratants. La variété du coefficient de sélectivité d'action massive est interprétée en termes d'une entropie de surface dépendante de la composition, qui est une fonction des propriétés chimiques de l'ion en échange aussi bien que de la nature des sites d'adsorption. L’équation d’échange sous forme d'action massive généralement utilisée peut seulement être appliquée à des systèmes d’échange dans pesquels les deux ions ont une mobilité de solution à la surface d’échange. On suggère que les variables telles la force ionique peut fortement influencer le degré d'ajustement de données à une équation d’échange d'ions donnée.

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

Footnotes

1

Agronomy Paper No, 133.

References

Adamson, A. W. (1976) Physical Chemistry of Surfaces: Wiley-Interscience, New York, 698 pp.Google Scholar
Barrer, R. M. and Klinowski, J. (1977) Theory of isomorphous replacement in aluminosilicates: Phil. Trans. Roy. Soc. London, Series A 285, 637676.Google Scholar
Davis, L. E. (1950) Ionic exchange and statistical thermodynamics: I. Equilibria in simple exchange systems: J. Colloid Sci. 5, 7179.CrossRefGoogle Scholar
Eriksson, E. (1952) Cation-exchange equilibria on clay minerals: Soil Sci. 74, 103113.CrossRefGoogle Scholar
Faucher, J. A. and Thomas, H. C. (1954) Adsorption studies on clay minerals IV. The system montmorillonite–cesium–potassium: J. Chem. Phys. 22, 258261.CrossRefGoogle Scholar
Gaines, G. L. and Thomas, H. C. (1953) Adsorption studies on clay minerals II. A formulation of the thermodynamics of exchange adsorption: J. Chem. Phys. 21, 714718.CrossRefGoogle Scholar
Garrels, R. M. and Christ, C. L. (1965) Solutions, Minerals, and Equilibria: Harper and Row, New York , 450 pp.Google Scholar
Gast, R. G. (1972) Alkali metal cation exchange on Chambers montmorillonite: Soil Sci. Soc. Amer. Proc. 36, 1419.CrossRefGoogle Scholar
Gast, R. G. and Klobe, W. D. (1971) Sodium–lithium exchange equilibria on vermiculite at 25°C and 50°C: Clays & Clay Minerals 19, 311319.CrossRefGoogle Scholar
Kerr, H. W. (1928) The nature of base exchange and soil acidity: J. Amer. Soc: Agron. 20, 309335.Google Scholar
Kielland, J. (1935) Thermodynamics of base-exchange equilibria of some different kinds of clays: J. Soc. Chem. Ind. 54, 232T234T.Google Scholar
Krishnamoorthy, C. and Overstreet, R. (1949) Theory of ionexchange relationships: Soil Sci. 68, 307315.CrossRefGoogle Scholar
Laudelout, H., Van Bladel, R., Bolt, G. H., and Page, A. L. (1968) Thermodynamics of heterovalent cation exchange reactions in a montmorillonite clay: Trans. Faraday Soc. 64, 14771488.CrossRefGoogle Scholar
Lewis, R. J. and Thomas, H. C. (1963) Adsorption studies on clay minerals. VIII. A consistency test of exchange sorption in the systems sodium–cesium–barium montmorillonite: J. Phys. Chem. 67, 17811783.CrossRefGoogle Scholar
Marshall, C. E. (1964) The Physical Chemistry and Mineralogy of Soils. Vol. 1: Soil materials: Wiley and Sons, New York , 388 pp.Google Scholar
McBride, M. B. and Bloom, P. R. (1977) Adsorption of aluminum by a smectite. II. An Al3+–Ca2+ exchange model: Soil Sci. Soc. Amer. J. 41, 10731077.CrossRefGoogle Scholar
Reichenberg, D. (1966) Ion-exchange selectivity: in Ion Exchange: A Series of Advances, Vol. 1, Marinsky, J. A., ed., Marcel Dekker, New York, 227276.Google Scholar
Sherry, H. S. (1969) The ion-exchange properties of zeolites: in Ion Exchange: A Series of Advances, Vol. 2, Marinsky, J. A., ed., Marcel Dekker, New York, 89133.Google Scholar
Sherry, H. S. (1979) Ion-exchange properties of the natural zeolite erionite: Clays & Clay Minerals, 27, 231237.CrossRefGoogle Scholar
Sposito, G. and Mattigod, S. V. (1979) Ideal behavior in Na+-trace metal cation exchange on Camp Berteau montmorillonite: Clays & Clay Minerals 27, 125138.CrossRefGoogle Scholar
Theng, B. K. G. (1974) The Chemistry of Clay-Organic Reactions: Wiley and Sons, New York , 343 pp.Google Scholar
Vansant, E. F. and Peeters, G. (1978) The exchange of alkylammonium ions on Na-laponite: Clays & Clay Minerals 26, 279284.CrossRefGoogle Scholar
Vanselow, A. P. (1932) Equilibria of the base-exchange reactions of bentonites, permutites, soil colloids and zeolites: Soil Sci. 33, 95113.CrossRefGoogle Scholar
Walton, H. F. (1949) Ion exchange equilibria: in Ion Exchange, Nachod, F. C., ed., Academic Press, New York, 411 pp.Google Scholar