Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T04:04:39.428Z Has data issue: false hasContentIssue false

Application of 29Si and 27Al MAS NMR spectroscopy to the study of the reaction mechanism of kaolinite to illite/muscovite

Published online by Cambridge University Press:  01 January 2024

Marco Mantovani
Affiliation:
Instituto de Ciencia de Materiales de Sevilla - Dpto. de Química Inorgánica, CSIC-US, c/ Américo Vespucio, 49, 41092 Sevilla, Spain
Alberto Escudero
Affiliation:
Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, Germany
Ana Isabel Becerro*
Affiliation:
Instituto de Ciencia de Materiales de Sevilla - Dpto. de Química Inorgánica, CSIC-US, c/ Américo Vespucio, 49, 41092 Sevilla, Spain
*
* E-mail address of corresponding author: anieto@icmse.csic.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding the mechanisms for illitization of clay minerals has important applications in reconstructing geologic histories and determining the origins of physical and chemical characteristics of buried sediments. While many studies have been carried out on this topic, few have focused on the mechanism of illite formation from kaolinite. The purpose of this study was to investigate more deeply the illitization of kaolinite in KOH solution at a high solid/liquid ratio (1000 mg/mL). X-ray diffraction (XRD) and infrared spectroscopy were used to follow the formation of new crystalline phases and the composition of the octahedral sheet, while the transformation of the Si and Al local environments was analyzed by 29Si and 27Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). The results revealed that the first reaction stage consists of the diffusion of Al from the octahedral to the tetrahedral sheet of the kaolinite TO layers, giving rise to the precursors of the illite/muscovite nuclei. Combination of XRD with 27Al MAS NMR measurements indicated that a minimum amount of tetrahedral Al is required in the original TO layer before condensation of a second tetrahedral sheet occurs to complete the formation of the illite/muscovite TOT layers.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Ahn, J.H. and Buseck, P.R., 1986 Transmission and analytical electron microscopy of the smectite to illite transition Clays and Clay Minerals 34 165179 10.1346/CCMN.1986.0340207.Google Scholar
Altaner, S.P. and Ylagan, R.F., 1997 Comparison of structural models of mixed-layer illite/smectite and reaction mechanism of smectite illitization Clays and Clay Minerals 45 517533.CrossRefGoogle Scholar
Bailey, S.W. and Bailey, S.W., 1984 Classification and structures of micas Micas Washington, D.C. Mineralogical Society of America 112 10.1515/9781501508820.CrossRefGoogle Scholar
Bauer, A. and Berger, G., 1998 Kaolinite and smectite dissolution rate in high molar KOH solutions at 35°C and 80°C Applied Geochemistry 13 905916 10.1016/S0883-2927(98)00018-3.CrossRefGoogle Scholar
Bauer, A. Velde, B. and Berger, G., 1998 Kaolinite transformation in high molar KOH solutions Applied Geochemistry 13 619629 10.1016/S0883-2927(97)00094-2.CrossRefGoogle Scholar
Bentabol, M. Ruiz Cruz, M.D. Huertas, F.J. and Linares, J., 2003 Hydrothermal transformation of kaolinite to illite at 200 and 300°C Clay Minerals 38 161172 10.1180/0009855033820086.CrossRefGoogle Scholar
Bentabol, M. Ruiz Cruz, M.D. Huertas, F.J. and Linares, J., 2003 Characterization of the expandable clays formed from kaolinite at 200°C Clay Minerals 38 445458 10.1180/0009855033840108.CrossRefGoogle Scholar
Bentabol, M. Ruiz Cruz, M.D. Huertas, F.J. and Linares, J., 2006 Chemical and structural variability of illitic phases formed from kaolinite in hydrothermal conditions Applied Clay Science 32 111124 10.1016/j.clay.2005.12.003.CrossRefGoogle Scholar
Chermak, J.A. and Rimstidt, J.D., 1990 The hydrothermal transformation rate of kaolinite to muscovite/illite Geochimica et Cosmochimica Acta 54 29792990 10.1016/0016-7037(90)90115-2.CrossRefGoogle Scholar
De Almeida Martins, L., 1999 Illitisasion des minéraux argileux du groupe kaolin dans le champs pétrolier de Rind (Norvège) DEA Thesis France Université de Poitiers.Google Scholar
Dutta, P.K. and Suttner, L.J., 1986 Alluvial sandstone composition and paleoclimate. II. Authigenic mineralogy Journal of Sedimentology and Petrology 56 346358.Google Scholar
Engelhardt, G. and Michel, D., 1987 High-Resolution Solid state NMR of Silicates and Zeolites New York John Wiley and Sons 179 pp.Google Scholar
Grim, R.E., 1968 Clay Mineralogy New York McGraw-Hill Book Company.Google Scholar
Hancock, N.J. and Taylor, A.M., 1978 Clay mineral diagenesis and oil migration in the Middle Jurassic Brent Sand Formation Journal of the Geological Society 135 6972 10.1144/gsjgs.135.1.0069.CrossRefGoogle Scholar
Huang, W.L., 1993 The formation of illitic clays from kaolinite in KOH solution from 225°C to 350°C Clays and Clay Minerals 41 645654 10.1346/CCMN.1993.0410602.Google Scholar
Inoue, A. and Utada, M., 1983 Further investigations of a conversion series of dioctahedral mica/smectites in the Shinzan hydrothermal alteration area, northeast Japan Clays and Clay Minerals 31 401412 10.1346/CCMN.1983.0310601.CrossRefGoogle Scholar
Inoue, A. Velde, B. Meunier, A. and Touchard, G., 1988 Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system American Mineralogist 73 13251334.Google Scholar
Inoue, A. Watanabe, T. Koyhama, N. and Brusewitz, A.M., 1990 Characterization of illitization of smectite in bentonite beds at Kinnekulle, Sweeden Clays and Clay Minerals 38 241249 10.1346/CCMN.1990.0380302.CrossRefGoogle Scholar
Jennings, S. and Thompson, G.R., 1986 Diagenesis of Plio-Pleistocene sediments of the Colorado River delta, southern California Journal of Sedimentary Petrology 56 8998.Google Scholar
Kinsey, R.A. Kirkpatrick, R.J. Hower, J. Smith, K.A. and Oldfield, E., 1985 High-resolution Al-27 and Si-29 Nuclear Magnetic-Resonance spectroscopic study of layer silicates, including clay-minerals American Mineralogist 70 537548.Google Scholar
Kirkpatrick, R.J. Kinsey, R.A. Smith, K.A. Henderson, D.M. and Oldfield, E., 1985 High-resolution solid-state Na-23, Al-27, and Si-29 Nuclear Magnetic-Resonance spectroscopic reconnaissance of alkali and plagioclase feldspars American Mineralogist 70 106123.Google Scholar
Liebau, F., 1985 Structural Chemistry of Silicates 10.1007/978-3-642-50076-3.CrossRefGoogle Scholar
Lipsicas, M. Raythatha, R.H. Pinnavaia, T.J. Johnson, J.D. Giese, R.F. Costanzo, P.M. and Roberts, J.L., 1984 Silicon and Aluminum site distributions in 2-1 layered silicate clays Nature 309 604605 10.1038/309604a0.CrossRefGoogle Scholar
Madejová, J. and Komadel, P., 2001 Baseline studies of the Clay Minerals Society source clays: Infrared methods Clays and Clay Minerals 49 410432 10.1346/CCMN.2001.0490508.CrossRefGoogle Scholar
Martín-Martin, J.D. Gómez-Gras, D. Sanfeliu, T. Permanyer, A. Núñez, J.A. and Parcerisa, D., 2006 Conditions of kaolin illitization in the Permo-Triassic sandstones from the SE Iberian Ranges, Spain Journal of Geochemical Exploration 89 263266 10.1016/j.gexplo.2005.11.061.CrossRefGoogle Scholar
Mermut, A.R. and Faz Cano, A., 2001 Baseline Studies of the Clay Minerals Society Source Clays: Chemical analysis of major elements Clays and Clay Minerals 49 381386 10.1346/CCMN.2001.0490504.CrossRefGoogle Scholar
Pollard, C.O., 1971 Appendix: Semidisplacive mechanism for diagenetic alteration of montmorillonite layers to illite layers Geological Society of America, Special Papers 134 7993 10.1130/SPE134-p79.CrossRefGoogle Scholar
Sanz, J. and Serratosa, J.M., 1984 29Si and 27Al High Resolution MAS NMR Spectra of Phyllosilicates Journal of the American Chemical Society 106 47904793 10.1021/ja00329a024.CrossRefGoogle Scholar
Schoonmaker, J. Mackenzie, F.T. and Speed, R.C., 1986 Tectonic implications of illite/smectite diagenesis, Barbados accretionary prism Clays and Clay Minerals 34 465472 10.1346/CCMN.1986.0340413.CrossRefGoogle Scholar
Sommer, F., 1978 Diagenesis of Jurassic sandstones in the Viking Graben Journal of the Geological Society 125 6367 10.1144/gsjgs.135.1.0063.CrossRefGoogle Scholar
Velde, B., 1965 Experimental determination of muscovite polymorph stabilities American Mineralogist 50 436449.Google Scholar
Weaver, C.E. and Beck, K.C., 1971 Clay water diagenesis during burial: how much become gneiss Geological Society of America, Special Papers 134 196 10.1130/SPE134-p1.CrossRefGoogle Scholar
Weiss, C.A. Altaner, S.P. and Kirkpatrick, R.J., 1987 High-resolution 29Si NMR spectroscopy of 2:1 layer silicates: Correlations among chemical shift, structural distortions, and chemical variations American Mineralogist 72 935942.Google Scholar
Woessner, D.E., 1989 Characterization of clay minerals by Al-27 nuclear magnetic resonance spectroscopy American Mineralogist 74 203215.Google Scholar
Yau, L. Peacor, D.R. and McDowell, S.D., 1987 Smectite to illite reactions in Salton Sea shales: A transmission and analytical electron microscopy study Journal of Sedimentary Petrology 57 335342.Google Scholar